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• Classical proofs are weaker than quantum even with a
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• Quantum proofs cannot substitute for interaction, i.e.,
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(Also, some inclusions in the polynomial-time setting carry over)
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√

n).)

Theorem (Hopefully!)

QIPPs with complexities O(nα) for some α < 1/2.



Next goal

Theorem ([RVW13], [RR20])

Every language in logspace-uniform NC admits a doubly-efficient
IPP with communication and query complexities Õ(
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