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Introduction: QMA

Decide language L in polynomial time, with non-interactive proof.

Delegation of computation: prover computes, verifier checks.
Given x ∈ {0, 1}n and a poly(n)-qubit state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x /∈ L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V runs in poly(n) time. [Kitaev et al., 2002]
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QMA + property testing

Given quantum query access to x ∈ {0, 1}n and a state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x is ε-far from L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V makes q = o(n) queries and proof has p = o(n) qubits.
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. . . given quantum query access to x ∈ {0, 1}n and a state |ψ〉,
• if x ∈ Π, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x is ε-far from Π, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V makes q queries and proof has p qubits.
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Theorem (Amplitude amplification [Brassard et al., 2002])

If a one-sided randomised algorithm makes q queries and detects
an error with probability ρ, there is a quantum algorithm making
O(q/

√
ρ) queries that succeeds w. p. 2/3.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.
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q queries
ρ detection probability

=⇒ q/
√
ρ queries

2/3 detection probability

⇓

Seting p = n2/3 in the previous algorithm, it makes n1/3 queries to
detect an error with probability 1/n2/3. Therefore,

q = O

(
n1/3√
1/n2/3

)
= O(n2/3).
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Complexity classes

V V ← P V ↔ P

Classical P NP IP

Quantum

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.
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The following separations hold:

• QMAP 6⊆ MAP ∪QPT , i.e., quantum input access with a
proof are more powerful in tandem than separately;

• QMAP 6⊆ QCMAP, i.e., classical proofs are weaker than
quantum even with a quantum verifier;

• IPP 6⊆ QMAP, i.e., quantum proofs cannot substitute for
interaction.
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MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof



MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof



MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof



MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof



MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;
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Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉
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