
Quantum Proofs of Proximity

Marcel Dall’Agnol
University of Warwick

Tom Gur
University of Warwick

Subhayan Roy Moulik
University of Oxford

& UC Berkeley

Justin Thaler
Georgetown University

TQC 2021

Introduction

Part I: Quantum algorithms

Part II: Complexity separations

Introduction

Part I: Quantum algorithms

Part II: Complexity separations

Introduction: QMA

Decide language L in polynomial time, with non-interactive proof.

Delegation of computation: prover computes, verifier checks.
Given x ∈ {0, 1}n and a poly(n)-qubit state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x /∈ L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V runs in poly(n) time. [Kitaev et al., 2002]

Introduction: QMA

Decide language L in polynomial time, with non-interactive proof.
Delegation of computation: prover computes, verifier checks.

Given x ∈ {0, 1}n and a poly(n)-qubit state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x /∈ L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V runs in poly(n) time. [Kitaev et al., 2002]

Introduction: QMA

Decide language L in polynomial time, with non-interactive proof.
Delegation of computation: prover computes, verifier checks.

Given x ∈ {0, 1}n and a poly(n)-qubit state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x /∈ L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V runs in poly(n) time. [Kitaev et al., 2002]

Introduction: QMA

Decide language L in polynomial time, with non-interactive proof.
Delegation of computation: prover computes, verifier checks.

Given x ∈ {0, 1}n and a poly(n)-qubit state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x /∈ L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V runs in Õ(n) time.

Introduction: QMA

Decide language L in polynomial time, with non-interactive proof.
Delegation of computation: prover computes, verifier checks.

Given x ∈ {0, 1}n and a poly(n)-qubit state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x /∈ L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V runs in o(n) time?

QMA + property testing

Given quantum query access to x ∈ {0, 1}n and a state |ψ〉,
• if x ∈ L, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x is ε-far from L, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V makes q = o(n) queries and proof has p = o(n) qubits.

QMA + property testing

Given quantum query access to x ∈ {0, 1}n and a state |ψ〉,
• if x ∈ Π, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x is ε-far from Π, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V makes q = o(n) queries and proof has p = o(n) qubits.

QMAP

. . . given quantum query access to x ∈ {0, 1}n and a state |ψ〉,
• if x ∈ Π, ∃ |ψ〉 such that V accepts w.p. ≥ 2/3;

• if x is ε-far from Π, ∀ |ψ〉, V accepts w.p. ≤ 1/3.

V makes q queries and proof has p qubits.

Introduction

Part I: Quantum algorithms

Part II: Complexity separations

Theorem (Amplitude amplification [Brassard et al., 2002])

If a one-sided randomised algorithm makes q queries and detects
an error with probability ρ, there is a quantum algorithm making
O(q/

√
ρ) queries that succeeds w. p. 2/3.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.

Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.

Theorem (Amplitude amplification)

q queries
ρ detection probability

=⇒ q/
√
ρ queries

2/3 detection probability

⇓

Seting p = n2/3 in the previous algorithm, it makes n1/3 queries to
detect an error with probability 1/n2/3. Therefore,

q = O

(
n1/3√
1/n2/3

)
= O(n2/3).

Theorem (Amplitude amplification)

q queries
ρ detection probability

=⇒ q/
√
ρ queries

2/3 detection probability

⇓

Seting p = n2/3 in the previous algorithm, it makes n1/3 queries to
detect an error with probability 1/n2/3. Therefore,

q = O

(
n1/3√
1/n2/3

)
= O(n2/3).

Theorem

A similar strategy works for every decomposable property.

Includes:

• k-monotonicity;

• acceptance by branching programs;

• membership in context-free languages;

• Eulerian graph orientations.

Theorem

A similar strategy works for every decomposable property.

Includes:

• k-monotonicity;

• acceptance by branching programs;

• membership in context-free languages;

• Eulerian graph orientations.

Techniques

Decomposable properties: known classical proofs of proximity
[Gur and Rothblum, 2018, Goldreich et al., 2018]

Bipartiteness: Quantum collision-finding algorithm
[Ambainis, 2007, Ambainis et al., 2011]

Techniques

Decomposable properties: known classical proofs of proximity
[Gur and Rothblum, 2018, Goldreich et al., 2018]

Bipartiteness: Quantum collision-finding algorithm
[Ambainis, 2007, Ambainis et al., 2011]

Techniques

Decomposable properties: known classical proofs of proximity
[Gur and Rothblum, 2018, Goldreich et al., 2018]

Bipartiteness: Quantum collision-finding algorithm
[Ambainis, 2007, Ambainis et al., 2011]

Introduction

Part I: Quantum algorithms

Part II: Complexity separations

Complexity classes

V V ← P V ↔ P

Classical P NP IP

Quantum

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Complexity classes

V V ← P V ↔ P

Classical PT

Quantum

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Complexity classes

V V ← P V ↔ P

Classical PT MAP

Quantum

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Complexity classes

V V ← P V ↔ P

Classical PT MAP IPP

Quantum

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Complexity classes

V V ← P V ↔ P

Classical PT MAP IPP

Quantum

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Complexity classes

V V ← P V ↔ P

Classical PT MAP IPP

Quantum QPT

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Complexity classes

V V ← P V ↔ P

Classical PT MAP IPP

Quantum QPT QMAP

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Complexity classes

V V ← P V ↔ P

Classical PT MAP IPP

Quantum QPT QMAP QIPP

Also QCMAP:

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.

Theorem

The following separations hold:

• QMAP 6⊆ MAP ∪QPT , i.e., quantum input access with a
proof are more powerful in tandem than separately;

• QMAP 6⊆ QCMAP, i.e., classical proofs are weaker than
quantum even with a quantum verifier;

• IPP 6⊆ QMAP, i.e., quantum proofs cannot substitute for
interaction.

V V ← P V ↔ P
Classical PT MAP IPP
Quantum QPT QMAP

Theorem

The following separations hold:

• QMAP 6⊆ MAP ∪QPT , i.e., quantum input access with a
proof are more powerful in tandem than separately;

• QMAP 6⊆ QCMAP, i.e., classical proofs are weaker than
quantum even with a quantum verifier;

• IPP 6⊆ QMAP, i.e., quantum proofs cannot substitute for
interaction.

V V ← P V ↔ P
Classical PT MAP IPP
Quantum QPT QMAP

Theorem

The following separations hold:

• QMAP 6⊆ MAP ∪QPT , i.e., quantum input access with a
proof are more powerful in tandem than separately;

• QMAP 6⊆ QCMAP, i.e., classical proofs are weaker than
quantum even with a quantum verifier;

• IPP 6⊆ QMAP, i.e., quantum proofs cannot substitute for
interaction.

V V ← P V ↔ P
Classical PT MAP IPP
Quantum QPT QMAP

V V ← P V ↔ P
Classical PT MAP IPP
Quantum QPT QMAP

V V ← P V ↔ P
Classical PT MAP IPP
Quantum QPT QMAP

MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof

MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof

MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof

MAP 6⊆ QPT : disjointness + relaxed LDC

PT lower bounds via communication complexity have proven very
successful. [Blais et al., 2012]

What about QPT ? [Montanaro and de Wolf, 2013]

Is there i ∈ [n] such that xi = yi = 1?

• Ω(n) classicaly

• Ω(
√
n) quantumly

• O(1) with log n proof

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
1 bit?

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
1 bit?

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
1 bit?

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
1 bit?

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
1 bit?

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
1 bit?

A: b1.

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
2 bit?

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
2 bit?

A: b2.

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
q bit?

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: i th
q bit?

A: bq.

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: bit?
A: .

Solving disjointness with c · q = Ω(n) bits of communication

⇓
q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

How can we “transfer” communication lower bounds to testers?

Assume there exists property Π such that:

• Π is ε-testable with q queries;

• there exists a mapping C such that C (x , y) ∈ Π if x and y are
disjoint, and otherwise C (x , y) is ε-far from Π;

• communicating c bits, we can find out the i th bit of C (x , y).

Q: bit?
A: .

Solving disjointness with c · q = Ω(n) bits of communication
⇓

q = Ω(n/c)

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.

B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B
⇓

Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B
⇓

Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B
⇓

Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Let C : Fn 7→ FN be a linear code with distance ε.
B := {C (x) : x ∈ {0, 1}n } are the encodings of Boolean messages.

x and y are disjoint ⇐⇒ C (x + y) ∈ B

⇓
Quantum ε-tester for B can be used to solve disjointness!

Goal: simulate a query |i〉 |z〉 7→ |i〉 |z + C (x + y)i 〉

MAP 6⊆ QPT : disjointness + relaxed LDC

Each query is simulated by O(logN) qubits of communication.

Quantum ε-tester for B with q queries
⇓

Protocol with O(q logN) communication complexity

C locally testable and relaxed locally decodable with N = n1.001,
[Ben-Sasson et al., 2006]

• C \ B /∈ QPT (ε, n0.49)

• C \ B ∈MAP(ε, log n,O(1))

(Proof points to non-Boolean i ∈ [n]; verifier tests membership in
C then decodes i th coordinate and checks if it is Boolean.)

MAP 6⊆ QPT : disjointness + relaxed LDC

Each query is simulated by O(logN) qubits of communication.

Quantum ε-tester for B with q queries
⇓

Protocol with O(q logN) communication complexity

C locally testable and relaxed locally decodable with N = n1.001,
[Ben-Sasson et al., 2006]

• C \ B /∈ QPT (ε, n0.49)

• C \ B ∈MAP(ε, log n,O(1))

(Proof points to non-Boolean i ∈ [n]; verifier tests membership in
C then decodes i th coordinate and checks if it is Boolean.)

MAP 6⊆ QPT : disjointness + relaxed LDC

Each query is simulated by O(logN) qubits of communication.

Quantum ε-tester for B with q queries
⇓

Protocol with O(q logN) communication complexity

C locally testable and relaxed locally decodable with N = n1.001,
[Ben-Sasson et al., 2006]

• C \ B /∈ QPT (ε, n0.49)

• C \ B ∈MAP(ε, log n,O(1))

(Proof points to non-Boolean i ∈ [n]; verifier tests membership in
C then decodes i th coordinate and checks if it is Boolean.)

Other separations

QPT 6⊆ MAP: Forrelation [Aaronson and Ambainis, 2018]

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]
IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]

Other separations

QPT 6⊆ MAP: Forrelation [Aaronson and Ambainis, 2018]
QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]

Other separations

QPT 6⊆ MAP: Forrelation [Aaronson and Ambainis, 2018]
QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]
IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]

Open problems

• What about QIPP?

• Can QIPPs test NC languages with o(
√
n) proof and query

complexities? [Rothblum and Rothblum, 2020]

Thank you!

Open problems

• What about QIPP?

• Can QIPPs test NC languages with o(
√
n) proof and query

complexities? [Rothblum and Rothblum, 2020]

Thank you!

Open problems

• What about QIPP?

• Can QIPPs test NC languages with o(
√
n) proof and query

complexities? [Rothblum and Rothblum, 2020]

Thank you!

References I

Aaronson, S. and Ambainis, A. (2018).

Forrelation: A problem that optimally separates quantum from classical computing.
SIAM Journal on Computing, 47(3):982–1038.

Aaronson, S. and Kuperberg, G. (2007).

Quantum versus classical proofs and advice.
In 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San Diego,
California, USA, pages 115–128. IEEE Computer Society.

Ambainis, A. (2007).

Quantum walk algorithm for element distinctness.
SIAM Journal on Computing, 37(1):210–239.

Ambainis, A., Childs, A. M., and Liu, Y.-K. (2011).

Quantum property testing for bounded-degree graphs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages
365–376, Berlin, Heidelberg. Springer Berlin Heidelberg.

Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., and Vadhan, S. (2006).

Robust pcps of proximity, shorter pcps, and applications to coding.
SIAM Journal on Computing, 36(4):889–974.

Blais, E., Brody, J., and Matulef, K. (2012).

Property testing lower bounds via communication complexity.
computational complexity, 21(2):311–358.

Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2002).

Quantum amplitude amplification and estimation.
Contemporary Mathematics, 305:53–74.

References II

Goldreich, O., Gur, T., and Rothblum, R. D. (2018).

Proofs of proximity for context-free languages and read-once branching programs.
Information and Computation, 261:175–201.

Gur, T., Liu, Y. P., and Rothblum, R. D. (2018).

An exponential separation between MA and AM proofs of proximity.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Gur, T. and Rothblum, R. D. (2018).

Non-interactive proofs of proximity.
computational complexity, 27(1):99–207.

Kitaev, A. Y., Shen, A. H., and Vyalyi, M. N. (2002).

Classical and Quantum Computation, volume 47 of Graduate studies in mathematics.
American Mathematical Society.

Montanaro, A. and de Wolf, R. (2013).

A survey of quantum property testing.
arXiv:1310.2035.

Rothblum, G. N. and Rothblum, R. D. (2020).

Batch verification and proofs of proximity with polylog overhead.
In Theory of Cryptography Conference, pages 108–138. Springer.

Sherstov, A. A. and Thaler, J. (2019).

Vanishing-error approximate degree and QMA complexity.
arXiv:1909.07498.

References III

Images:

Server Icon by Rank Sol on Iconscout
Mobile by Momento Design from the Noun Project
Laptop Icon by Jemis Mali from Iconscout
Smartwatch by juan manjarrez from the Noun Project
database by mardjoe from the Noun Project
atom by Fengquan Li from the Noun Project

https://disney.fandom.com/wiki/Alice/Gallery?file=Alice Render.png

https://loathsomecharacters.miraheze.org/wiki/File:SpongeBob SquarePants.png

