
Quantum Proofs of Proximity

Marcel Dall’Agnol
University of Warwick

Tom Gur
University of Warwick

Subhayan Roy Moulik
University of Oxford

& UC Berkeley

Justin Thaler
Georgetown University

BCTCS 2021



Introduction

Part I: Algorithms

Part II: Complexity separations



Introduction

Part I: Algorithms

Part II: Complexity separations



Introduction

Massive datasets, IoT: devices with dramatically different power.

Delegation of computation: prover computes, verifier checks.
Efficient: Õ(n) verifier runtime.



Introduction

Massive datasets, IoT: devices with dramatically different power.

Delegation of computation: prover computes, verifier checks.
Efficient: Õ(n) verifier runtime.



Introduction

Massive datasets, IoT: devices with dramatically different power.

Delegation of computation: prover computes, verifier checks.
Efficient: Õ(n) verifier runtime.



Introduction

Massive datasets, IoT: devices with dramatically different power.

Delegation of computation: prover computes, verifier checks.

Efficient: Õ(n) verifier runtime.



Introduction

Massive datasets, IoT: devices with dramatically different power.

Delegation of computation: prover computes, verifier checks.
Efficient: Õ(n) verifier runtime.



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

V checks if x ∈ L by querying x with a proof from P.

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

V checks if x ∈ L by querying x with a proof from P.
Query complexity q, proof complexity p.

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

V checks if x ∈ L by querying x with a proof from P.
Efficient: o(n) queries and proof length.

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

Query complexity 1, proof complexity log n.

(Ω(n) with no proof!)



Proofs. . .

Example: Does x ∈ {0, 1}n contain a 1?

Query complexity 1, proof complexity log n.
(Ω(n) with no proof!)



. . . of proximity. . .

Example: Does x ∈ {0, 1}n contain a 1?

V checks if x ∈ Π or x is ε-far from Π (property testing).
Query complexity q, proof complexity p.

(Ω(n) with no proof!)



. . . with a twist

Example: Does x ∈ {0, 1}n contain a 1?

V checks if x ∈ Π or x is ε-far from Π (property testing).
Query complexity q, proof complexity p.

(Ω(n) with no proof!)



. . . with a twist

Example: Does x ∈ {0, 1}n contain a 1?

(Ω(n) with no proof!)



Introduction

Part I: Algorithms

Part II: Complexity separations



Theorem (Amplitude amplification [Brassard et al., 2002])

If a one-sided randomised algorithm makes q queries and detects
an error with probability ρ, there is a quantum algorithm making
O(q/

√
ρ) queries that succeeds w. p. 2/3.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.

Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Problem: Verify if x ∈ {0, 1}n has even parity.

Classically, we’re out of luck: Ω(n) with any proof.
Quantumly, an n2/3-bit proof and O(n2/3) queries suffice!

If the parity of the proof π is odd, reject.
Sample i ∈ [p] uniformly and query the i th block of n/p
bits. Accept if their parity matches πi , reject otherwise.



Theorem (Amplitude amplification)

q queries
ρ detection probability

=⇒ q/
√
ρ queries

2/3 detection probability

⇓

Seting p = n2/3 in the previous algorithm, it makes n1/3 queries to
detect an error w. p. 1/n2/3. Therefore,

q = O

(
n1/3√
1/n2/3

)
= O(n2/3).



Theorem (Amplitude amplification)

q queries
ρ detection probability

=⇒ q/
√
ρ queries

2/3 detection probability

⇓

Seting p = n2/3 in the previous algorithm, it makes n1/3 queries to
detect an error w. p. 1/n2/3. Therefore,

q = O

(
n1/3√
1/n2/3

)
= O(n2/3).



Main result

Theorem

A similar strategy works for every decomposable property.

(Includes k-monotonicity, acceptance by branching programs,
membership in context-free languages, and Eulerian graph
orientations.)



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Problem: Verify if the graph G is bipartite or ε-far from it.

Sample a vertex, take many random walks from it
and check whether any pair of walks ends at S with
different parities. If so, reject, and accept otherwise.



Theorem

For any k, bipartiteness of rapidly-mixing n-vertex graphs (in the
bounded-degree model) admits quantum proofs of proximity with

k log(n)-bit proofs and query complexity Õ
((

n
kε2

)1/3
)

.

Best quantum tester makes O(n1/3) queries, so k ≈
√
n beats it.

In best classical proof of proximity, k ≈ n2/3 for O(n1/3) queries.
(Also improves dependence on ε.)



Theorem

For any k, bipartiteness of rapidly-mixing n-vertex graphs (in the
bounded-degree model) admits quantum proofs of proximity with

k log(n)-bit proofs and query complexity Õ
((

n
kε2

)1/3
)

.

Best quantum tester makes O(n1/3) queries, so k ≈
√
n beats it.

In best classical proof of proximity, k ≈ n2/3 for O(n1/3) queries.
(Also improves dependence on ε.)



Theorem

For any k, bipartiteness of rapidly-mixing n-vertex graphs (in the
bounded-degree model) admits quantum proofs of proximity with

k log(n)-bit proofs and query complexity Õ
((

n
kε2

)1/3
)

.

Best quantum tester makes O(n1/3) queries, so k ≈
√
n beats it.

In best classical proof of proximity, k ≈ n2/3 for O(n1/3) queries.
(Also improves dependence on ε.)



Techniques

Decomposable properties: known classical proofs of proximity
[Gur and Rothblum, 2018, Goldreich et al., 2018]

Bipartiteness: Quantum collision-finding algorithm
[Ambainis, 2007, Ambainis et al., 2011]



Techniques

Decomposable properties: known classical proofs of proximity
[Gur and Rothblum, 2018, Goldreich et al., 2018]

Bipartiteness: Quantum collision-finding algorithm
[Ambainis, 2007, Ambainis et al., 2011]



Techniques

Decomposable properties: known classical proofs of proximity
[Gur and Rothblum, 2018, Goldreich et al., 2018]

Bipartiteness: Quantum collision-finding algorithm
[Ambainis, 2007, Ambainis et al., 2011]



Introduction

Part I: Algorithms

Part II: Complexity separations



Complexity classes

V V ← P V ↔ P

Classical PT MAP IPP

Quantum QPT QMAP QIPP

Also QCMAP: classical proof, quantum input access.

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.



Complexity classes

V V ← P V ↔ P

Classical PT MAP IPP

Quantum QPT QMAP QIPP

Also QCMAP: classical proof, quantum input access.

C := C(ε, p, q) with p, q = polylog(n) and

ε a small enough constant.



Main result

Theorem

The following separations hold:

• QMAP 6⊆ MAP ∪QPT , i.e., quantum input access with a
proof are more powerful in tandem than separately;

• QMAP 6⊆ QCMAP, i.e., classical proofs are weaker than
quantum even with a quantum verifier;

• IPP 6⊆ QMAP, i.e., quantum proofs cannot substitute for
interaction.



Main result



Main result



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

Given C (x) and C (y), ∃i ∈ [n]
such that xi = yi = 1?

• Ω(
√
n) without proof

• O(1) with log n proof

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

Given C (x) and C (y), ∃i ∈ [n]
such that xi = yi = 1?

• Ω(
√
n) without proof

• O(1) with log n proof

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

Given f , g : {0, 1}log n → {0, 1}, is 〈f , ĝ〉 small?

• O(1) quantum, without proof

• p · q = Ω(n1/4) classical, with proof

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

Given f , g : {0, 1}log n → {0, 1}, is 〈f , ĝ〉 small?

• O(1) quantum, without proof

• p · q = Ω(n1/4) classical, with proof

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]

Given f : [n]→ [n], is f a permutation?

• O(1) with (classical) interaction

• p · q = Ω(n1/3) quantum, without interaction



Techniques

MAP 6⊆ QPT : disjointness + relaxed locally
decodable code

QPT 6⊆ MAP: Forrelation
[Aaronson and Ambainis, 2018]

QMAP 6⊆ QCMAP: recasting QMA 6⊆ QCMA
[Aaronson and Kuperberg, 2007]

IPP 6⊆ QMAP: permutation testing
[Gur et al., 2018, Sherstov and Thaler, 2019]

Given f : [n]→ [n], is f a permutation?

• O(1) with (classical) interaction

• p · q = Ω(n1/3) quantum, without interaction



Open problems

• What about QIPP?

• Can QIPPs test NC languages with o(
√
n) proof and query

complexities? [Rothblum and Rothblum, 2020]

• Extend bipartiteness to non-rapidly-mixing graphs.

Thank you!



Open problems

• What about QIPP?

• Can QIPPs test NC languages with o(
√
n) proof and query

complexities? [Rothblum and Rothblum, 2020]

• Extend bipartiteness to non-rapidly-mixing graphs.

Thank you!



Open problems

• What about QIPP?

• Can QIPPs test NC languages with o(
√
n) proof and query

complexities? [Rothblum and Rothblum, 2020]

• Extend bipartiteness to non-rapidly-mixing graphs.

Thank you!



Open problems

• What about QIPP?

• Can QIPPs test NC languages with o(
√
n) proof and query

complexities? [Rothblum and Rothblum, 2020]

• Extend bipartiteness to non-rapidly-mixing graphs.

Thank you!



References I

Aaronson, S. and Ambainis, A. (2018).

Forrelation: A problem that optimally separates quantum from classical computing.
SIAM Journal on Computing, 47(3):982–1038.

Aaronson, S. and Kuperberg, G. (2007).

Quantum versus classical proofs and advice.
In 22nd Annual IEEE Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San Diego,
California, USA, pages 115–128. IEEE Computer Society.

Ambainis, A. (2007).

Quantum walk algorithm for element distinctness.
SIAM Journal on Computing, 37(1):210–239.

Ambainis, A., Childs, A. M., and Liu, Y.-K. (2011).

Quantum property testing for bounded-degree graphs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages
365–376, Berlin, Heidelberg. Springer Berlin Heidelberg.

Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2002).

Quantum amplitude amplification and estimation.
Contemporary Mathematics, 305:53–74.

Goldreich, O., Gur, T., and Rothblum, R. D. (2018).

Proofs of proximity for context-free languages and read-once branching programs.
Information and Computation, 261:175–201.

Gur, T., Liu, Y. P., and Rothblum, R. D. (2018).

An exponential separation between MA and AM proofs of proximity.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.



References II

Gur, T. and Rothblum, R. D. (2018).

Non-interactive proofs of proximity.
computational complexity, 27(1):99–207.

Rothblum, G. N. and Rothblum, R. D. (2020).

Batch verification and proofs of proximity with polylog overhead.
In Theory of Cryptography Conference, pages 108–138. Springer.

Sherstov, A. A. and Thaler, J. (2019).

Vanishing-error approximate degree and QMA complexity.
arXiv:1909.07498.

Images:

Server Icon by Rank Sol on Iconscout
Mobile by Momento Design from the Noun Project
Laptop Icon by Jemis Mali from Iconscout
Smartwatch by juan manjarrez from the Noun Project
database by mardjoe from the Noun Project
atom by Fengquan Li from the Noun Project

https://disney.fandom.com/wiki/Alice/Gallery?file=Alice Render.png

https://loathsomecharacters.miraheze.org/wiki/File:SpongeBob SquarePants.png


