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Efficient: Õ(n) verifier runtime.



Introduction

Massive datasets, IoT: devices with dramatically different power.

Delegation of computation: prover computes, verifier checks.
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Theorem (Amplitude amplification [Brassard et al., 2002])

If a one-sided randomised algorithm makes q queries and detects
an error with probability ρ, there is a quantum algorithm making
O(q/

√
ρ) queries that succeeds w. p. 2/3.
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Main result

Theorem

A similar strategy works for every decomposable property.

(Includes k-monotonicity, acceptance by branching programs,
membership in context-free languages, and Eulerian graph
orientations.)
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((

n
kε2

)1/3
)

.

Best quantum tester makes O(n1/3) queries, so k ≈
√
n beats it.

In best classical proof of proximity, k ≈ n2/3 for O(n1/3) queries.
(Also improves dependence on ε.)



Theorem

For any k, bipartiteness of rapidly-mixing n-vertex graphs (in the
bounded-degree model) admits quantum proofs of proximity with

k log(n)-bit proofs and query complexity Õ
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Main result

Theorem

The following separations hold:

• QMAP 6⊆ MAP ∪QPT , i.e., quantum input access with a
proof are more powerful in tandem than separately;

• QMAP 6⊆ QCMAP, i.e., classical proofs are weaker than
quantum even with a quantum verifier;

• IPP 6⊆ QMAP, i.e., quantum proofs cannot substitute for
interaction.
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