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Abstract

We prove a general structural theorem for a wide family of local algorithms, which includes
property testers, local decoders, and PCPs of proximity. Namely, we show that the structure of
every algorithm that makes q adaptive queries and satisfies a natural robustness condition admits
a sample-based algorithm with n1−1/O(q2 log2 q) sample complexity, following the definition of
Goldreich and Ron (TOCT 2016). We prove that this transformation is nearly optimal. Our
theorem also admits a scheme for constructing privacy-preserving local algorithms.

Using the unified view that our structural theorem provides, we obtain results regarding
various types of local algorithms, including the following.

• We strengthen the state-of-the-art lower bound for relaxed locally decodable codes, obtaining
an exponential improvement on the dependency in query complexity; this resolves an open
problem raised by Gur and Lachish (SICOMP 2021).

• We show that any (constant-query) testable property admits a sample-based tester with
sublinear sample complexity; this resolves a problem left open in a work of Fischer, Lachish,
and Vasudev (FOCS 2015), bypassing an exponential blowup caused by previous techniques
in the case of adaptive testers.

• We prove that the known separation between proofs of proximity and testers is essen-
tially maximal; this resolves a problem left open by Gur and Rothblum (ECCC 2013,
Computational Complexity 2018) regarding sublinear-time delegation of computation.

Our techniques strongly rely on relaxed sunflower lemmas and the Hajnal–Szemerédi theorem.

Keywords: local algorithms, sample-based algorithms, coding theory, property testing,
adaptivity, sunflower lemmas.
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1 Introduction

Sublinear-time algorithms are central to the theory of algorithms and computational complexity.
Moreover, with the surge of massive datasets in the last decade, understanding the power of
computation in sublinear time rapidly becomes crucial for real-world applications. Indeed, in recent
years this notion received a great deal of attention, and algorithms for a plethora of problems were
studied extensively.

Since algorithms that run in sublinear time cannot even afford to read the entirety of their
input, they are forced to make decisions based on a small local view of the input and are thus
often referred to as local algorithms.1 Prominent notions of local algorithms include property testers
[RS96, GGR98], which are probabilistic algorithms that solve approximate decision problems by
only probing a minuscule portion of their input; locally decodable codes (LDCs) [KT00] and locally
testable codes (LTCs) [GS06], which are codes that admit algorithms that, using a small number of
queries to their input, decode individual symbols and test the validity of the encoding, respectively;
and probabilistically checkable proofs (PCPs) [FGL+91, AS98, ALM+98], which are encodings of
NP-proofs that can be verified by examining only (say) 3 bits of the proof.

While the foregoing notions are often grouped under the umbrella term of local algorithms,
they are in fact very distinct. Indeed, local algorithms perform fundamentally different tasks, such
as testing, self-correcting, decoding, computing a local function, or verifying the correctness of a
proof. Moreover, the tasks are often performed under different promises (e.g., proximity to a valid
codeword in the case of LDCs, and deciding whether an object has a property or is far from having
it in the case of property testing).

Nevertheless, despite the aforementioned diversity, one of our main conceptual contributions
is capturing a fundamental structural property that is common to all of algorithms above and
beyond, which in turn implies sufficient structure for obtaining our main result. We build on
work of Fischer, Lachish and Vasudev [FLV15] as well as Gur and Lachish [GL21], which imply
an essentially equivalent structure for non-adaptive testers and local decoders, respectively; our
generalisation captures both and extends beyond them to the adaptive setting, as well as to other
classes of algorithms.

More specifically, we first formalise the notion of local algorithms in the natural way: we define
them simply as probabilistic algorithms that compute some function f(x), with high probability,
by making a small number of queries to the input x. We then observe that, except for degenerate
cases, having a promise on the input is necessary for algorithms that make a sublinear number of
queries to it. Finally, we formalise a natural robustness condition that captures this phenomenon
and is shared by most reasonable interpretations of local algorithms.

1.1 Robust local algorithms

We say that a local algorithm is robust if its output is stable under minor perturbations of the
input.2 To make the discussion more precise, we define a (ρ0, ρ1)-robust local algorithm M for
computing a partial function f : P → {0, 1} (where P ⊂ {0, 1}n) as a local algorithm that satisfies
the following: for every input w that is ρ0-close to x (which may or may not belong to P) such

1This terminology makes explicit that the (sublinear) parameter of interest is the algorithm’s query complexity, as
opposed to, say, space (as in the streaming model) or time.

2Note that the notion of robustness is a priori orthogonal to locality; however, as robustness is arguably the main
structural property of local algorithms, we restrict the discussion to their intersection.
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that f(x) = 0, we have Mw = 0 with high probability; and, for every w that is ρ1-close to x such
that f(x) = 1, we have Mw = 1 w.h.p. We remark that our results extend to larger alphabets (see
Section 4, where we formally define robust local algorithms).

We illustrate the expressivity of robust local algorithms via two examples: property testing and
locally decodable codes. We remark that similarly, locally testable codes, locally correctable codes,
relaxed LDCs, PCPs of proximity, and other notions can all be cast as robust local algorithms (see
Sections 4.2 to 4.4).

(a) A local decoder for the code C with decoding radius
δ. Codewords whose ith message bit equals 0 (resp. 1)
for a fixed i comprise C0 (resp. C1). The decoder
is robust in the δ/2-neighbourhood of C, with tiled
blue and green patterns. Inputs in the checkerboard
red area are within distance δ from C, but their δ/2-
neighbourhoods are not.

(b) An ε-tester for property Π. Inputs in
the tiled blue area are 2ε-far from Π, where
the tester is robust. While inputs in the
checkerboard red area are rejected by the
tester, this is not necessarily the case for
their ε-neighbourhoods.

Figure 1: Casting local decoders and property testers as robust local algorithms.

Locally decodable codes. An LDC is a code that admits algorithms for decoding each individual
bit of the message of a moderately corrupted codeword; that is, a code C : {0, 1}k → {0, 1}n with
decoding radius δ for which there exists a probabilistic algorithm D that, given an index i ∈ [k],
queries a string w promised to be δ-close to a codeword C(x) and outputs Dw(i) = xi with high
probability.

Observe that D can be viewed as a (δ/2, δ/2)-robust local algorithm for local decoding with
respect to decoding radius δ/2, that is, for the function f : [k]×P → {0, 1} where P = Bδ/2(ImC) is
the δ/2-neighbourhood of C.3 This is because the δ/2-neighbourhood of any point that is δ/2-close
to a codeword is still within the decoding radius, and thus the algorithm decodes the same value
when given either a codeword or a string in its neighbourhood; see Fig. 1a.

Property testing. Property testers are algorithms that solve approximate decision problems
by only probing a minuscule part of their input, and are one of the most widely studied types of

3Note that f additionally receives a coordinate i ∈ [k] as explicit input, which is allowed by the formal definition of
robustness (see Definition 4.2).
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sublinear algorithms (see, e.g., the textbook [Gol17]).
An ε-tester T for a property Π queries a string x and, with high probability, outputs 1 if x ∈ Π,

and outputs 0 if x is ε-far from Π. Here, unlike with local decoders, there is no robustness at all
with respect to 1-inputs:4 we can only cast T as an (ε, 0)-robust local algorithm for the function
f : P → {0, 1} where P is the union of Π and the complement of its 2ε-neighbourhood. We refer to
such robustness as one-sided.

Note that while T does not ε-test Π robustly, it is robust when viewed as a 2ε-tester: doubling
the proximity parameter ensures the ε-neighbourhood of each 0-input is still rejected (see Fig. 1b).

By the previous discussion, our scope includes local algorithms that only exhibit one-sided
robustness. Accordingly, we define robust local algorithms (without specifying the robustness
parameters) as (ρ0, ρ1)-robust local algorithms where max{ρ0, ρ1} = Ω(1).5 We stress that while
dealing with one-sided robustness is significantly more technically involved, our results also hold for
this type of local algorithm.

1.2 Main result

In this work, we capture structural properties that are common to all robust local algorithms and
leverage it to obtain a transformation that converts them into (uniform) sample-based algorithms.

Sample-based algorithms are provided with uniformly distributed labeled samples, or alternatively,
query each coordinate independently with some fixed probability. Adopting the latter perspective,
the sample complexity of such an algorithm is the expected number of coordinates that it samples.

In the following, we use n to denote the input size and assume the alphabet Σ over which the
input is defined is not too large (e.g., |Σ| ≤ n1/q4 suffices).

Theorem 1 (Theorem 6.1, informally stated). Every robust local algorithm with query complexity q

can be transformed into a sample-based local algorithm with sample complexity n1−1/O(q2 log2 q).

We stress that the robustness in Theorem 1 is only required on part of the input space (i.e.,
need only be one-sided); indeed, otherwise the structural properties captured become much more
restrictive (and are not shared by, e.g., property testers).

Moreover, we prove that the transformation in Theorem 1 is optimal up to a quadratic factor
in the dependency on the query complexity; that is, q-query robust local algorithms cannot be
transformed into sample-based algorithms with sample complexity n1−1/o(q) (see Section 7.3 for a
more precise statement).

Our proof of Theorem 1 strongly relies on analysing the query behaviour of robust local algorithms
by partitioning their local views into relaxed sunflowers and using volume lemmas that are implied
by their robustness. We build on the Hajnal–Szemerédi theorem to analyse sampling from relaxed
sunflowers (see Section 2 for a detailed technical overview).

By the generality of our definition, we can apply Theorem 1 to a wide family of well-studied
algorithms such as locally testable codes, locally decodable and correctable codes, relaxed LDCs,
universal LTCs, PCPs of proximity, and more (see Section 4 for details on how to cast these
algorithms as robust local algorithms).

4Unless the tester is tolerant : an (ε1, ε2)-tolerant tester is, by definition, ε1-robust with respect to its 1-inputs.
5Although Theorem 1 assumes an algorithm satisfying this condition, we remark that a weaker one suffices.

Supposing (without loss of generality) that ρ0 ≥ ρ1, only a single input x must imply Mw = 0 when w is Ω(1)-close to
x; then the result follows even for ρ0 = Θ(n−1/q) = o(1), where q is the query complexity of M .
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We note that [FLV15] and [GL21] obtain an essentially equivalent transformation for testers and
decoders, respectively, through “lossy” versions of our relaxed sunflower lemmas (they extract one
relaxed sunflower from the local views, rather than partition them) that applies to non-adaptive
algorithms; by a trivial transformation from adaptive to non-adaptive algorithms that incurs an
exponential increase in the query complexity, these previous works show transformations whose
sample-based algorithms have complexity n1−1/ exp(q), which we reduce to n1−1/poly(q) (indeed, as

far down as n1−1/Õ(q2)).

Motivation. The notion of sample-based local algorithms was first defined in [GGR98], and its
systematic study was initiated by Goldreich and Ron [GR16]. This is an intrinsically interesting
model of computation with practical potential, as obtaining random samples is much easier than
implementing full query access to a large input. Moreover, sample-based local algorithms admit
schemes for multi-computation (i.e., simultaneously computing multiple functions of the input using
the same queries), as well as schemes for private local computation, on which we elaborate below.

Private local computation. We wish to highlight an interesting application of Theorem 1 to
privacy. Suppose a client wishes to compute a function of data that is stored on a server, e.g., decode
a symbol of a code or test whether the data has a certain property. Typically, the query behaviour of
a local algorithm may leak information on which function the client attempts to compute. However,
since sample-based algorithms probe their input uniformly, they can be used to compute the desired
function without revealing any information on which function was computed, e.g., which coordinate
was decoded or which property was tested.

Furthermore, since Theorem 1 transforms any robust local algorithm into a sample-based local
algorithm that probes its input obliviously to the function it computes,6 then (after standard error-
reduction) we can apply Theorem 1 to many algorithms at once and reuse the samples to obtain a
local algorithm that computes multiple functions at the same time (see Section 1.3.2).

1.3 Applications

We proceed to our main applications, which range over three fields of study: coding theory, property
testing and probabilistic proof systems. We remark that our testing application follows as a direct
corollary of Theorem 1, but adapting it to decoders and proof systems require additional arguments.

1.3.1 Relaxed locally decodable codes

Locally decodable codes play an important role in contemporary coding theory. Since their systematic
study was initiated by Katz and Trevisan [KT00], they made a profound impact on several areas
of theoretical computer science (see, e.g., [Tre04, Yek12, KS17] and references therein), and led to
practical applications in distributed storage [HSX+12].

Despite the success and attention that LDCs received in the last two decades, the best construction
of O(1)-query LDCs has super-polynomial blocklength (cf. [Efr12], building on [Yek08]). This barrier
led to the study of relaxed LDCs, which were introduced in the foundational work of Ben-Sasson,
Goldreich, Harsha, Sudan, and Vadhan [BGH+06]. In a recent line of research, relaxed LDCs

6We stress that such obliviousness does not not correspond to a differential privacy guarantee.
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and variants thereof were applied to PCPs [MR10, DH13, RR20], property testing [CG18], data
structures [CGdW13] and probabilistic proof systems (e.g., [GR17, DGRMT22]).

Loosely speaking, this relaxation allows the local decoder to abort on a small fraction of the
indices, yet crucially, still avoid errors. More accurately, a relaxed LDC C : {0, 1}k → {0, 1}n with
decoding radius δ is a code that admits a probabilistic algorithm, a decoder, which on input index
i ∈ [k] makes queries to a string w ∈ {0, 1}n that is δ-close to a codeword C(x) and satisfies the
following: (1) if the input is a valid codeword (i.e., w = C(x)), the decoder outputs xi with high
probability; and (2) otherwise, with high probability, the decoder must either output xi or a special
“abort” symbol ⊥, indicating it detected an error and is unable to decode.7

This seemingly modest relaxation allows for obtaining dramatically stronger parameters. Indeed,
[BGH+06] constructed a q-query relaxed LDC with blocklength n = k1+1/Ω(

√
q), and raised the

problem of whether it is possible to obtain better rates; the best known construction, obtained
in recent work of Asadi and Shinkar [AS21], improves it to n = k1+1/Ω(q). We stress that proving
lower bounds on relaxed LDCs is significantly harder than on standard LDCs, and indeed, the first
non-trivial lower bound was only recently obtained in [GL21], which shows that, to obtain query
complexity q, the code must have blocklength

n ≥ k
1+ 1

O(22q ·log2 q) .

This shows that O(1)-query relaxed LDCs cannot obtain quasilinear length, a question raised in
[Gol11], but still leaves exponential room for improvement in the dependency on query complexity
(note that even for q = O(1) this strongly affects the asymptotic behaviour). Indeed, eliminating
this exponential dependency was raised as the main open problem in [GL21].

Fortunately, our technical framework is general enough to capture relaxed LDCs as well, and in
turn, our main application for coding theory resolves the aforementioned open problem by obtaining
a lower bound with an exponentially better dependency on the query complexity. Along the way,
we also extend the lower bound to hold for relaxed decoders with two-sided error, resolving another
problem left open in [GL21].

Theorem 2 (Corollary 7.8, informally stated). Any relaxed LDC C : {0, 1}k → {0, 1}n with constant
decoding radius δ and query complexity q must have blocklength at least

n ≥ k
1+ 1

O(q2 log2 q) .

This also makes significant progress towards resolving the problem due to [BGH+06], by narrowing
the gap between lower and upper bounds to merely a quadratic factor.

1.3.2 Property testing

Recall that a standard ε-tester for a property Π is endowed with the ability to make queries, accepting
inputs in Π and rejecting inputs that are ε-far from Π. An alternative definition, first given in
[GGR98], only provides the tester with uniformly distributed labeled samples (or, equivalently, with
uniform and independent queries to each coordinate). Such algorithms are called sample-based testers
and have received attention recently [GR16, FGL14, BGS15, FLV15, CFSS17, BMR19a, BMR19b].8

7As observed in [BGH+06], these two conditions suffice for obtaining a third condition which guarantees that the
decoder only outputs ⊥ on an arbitrarily small fraction of the coordinates.

8More accurately, these are uniform sample-based testers (in contrast to the [BGS15] tester, which queries
coordinates in a random subspace). We adopt the original terminology of [GR16] for simplicity.
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As an immediate corollary of Theorem 1, we obtain that any constant-query testable property
(up to 5

√
log n-query, in fact) admits a sample-based tester with sublinear sample complexity. This

resolves a problem left open in a work of Fischer, Lachish, and Vasudev [FLV15], who showed a
similar statement for non-adaptive testers, by extending it to the adaptive setting.9

Theorem 3 (Corollary 7.1, informally stated). Any property Π ⊆ {0, 1}n that is ε-testable with q

queries admits a sample-based 2ε-tester with sample complexity n1−1/O(q2 log2 q).

This also admits an application to adaptive multi-testing, where the goal is to simultaneously test a
large number of properties. In Section 4.2 we show that as a corollary of Theorem 3 we can multi-test,

with sublinear query complexity, exponentially many properties, namely k = exp
(
n1/ω(q2 log2 q)

)
,

that are each testable with q adaptive queries.

1.3.3 Proofs of proximity

Proofs of proximity [RVW13] are probabilistic proof systems that allow for delegation of computation
in sublinear time. They were studied extensively in recent years, finding applications in cryptography
with both computational [KR15] and information-theoretic security [RRR21, BRV18].

In the non-interactive setting, we have a verifier that wishes to ascertain the validity of a given
statement, using a short (sublinearly long) explicitly given proof, and a sublinear number of queries
to its input. Since the verifier cannot even read the entire input, it is only required to reject inputs
that are far from being valid. Thus, the verifier is only assured of the proximity of the statement to
a correct one. Such proof systems can be viewed as the NP (or, more accurately, MA) analogue of
property testing, and are referred to as MA proofs of proximity (MAPs).

As such, one of the most fundamental questions regarding proofs of proximity is their relative
strength in comparison to testers; that is, whether verifying a proof for an approximate decision
problem can be done significantly more efficiently than solving it. One of the main results in [GR18]
is that this can indeed be the case. Namely, there exists a property Π which: (1) admits an adaptive
MAP with proof length O(log n) and query complexity q = O(1); and (2) requires at least n1−1/Ω(q)

queries to be tested without access to a proof.10

In Section 7.3 we use Theorem 1 to show that the foregoing separation is nearly tight.

Theorem 4 (Theorem 7.11, informally stated). Any property Π ⊆ {0, 1}n that admits an adaptive
MAP with query complexity q and proof length p also admits a tester with query complexity p ·
n1−1/O(q2 log2 q).

Interestingly, we remark that we rely on Theorem 4 to prove the (near) optimality of Theorem 1
(see Section 7.3 for details).

1.4 Discussion and open questions

Our work leaves several interesting directions and open problems that we wish to highlight. Firstly,
we stress that our structural theorem is extremely general, and indeed the robustness condition that
induces the structure required by Theorem 1 appears to hold for most reasonable interpretations

9[FLV15] applies to adaptive testers with an exponential blowup in query complexity, which our result avoids.
10We remark that the bound in [GR18] is stated in a slightly weaker form. However, it is straightforward to see

that the proof achieves the bound stated above. See Section 7.3.
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of robust local algorithms. While we gave applications to coding theory, property testing, and
probabilistic proof systems, it would be interesting to see whether our framework (or a further
generalisation of it) could imply applications to other families of local algorithms, such as PAC
learners, local computation algorithms (LCAs), and beyond.

Open question 1. Can Theorem 1 and the framework of robust local algorithms be used to obtain
query-to-sample transformations for PAC learners and LCAs?

One promising direction that we did not explore is on rate lower bounds on PCPs of proximity
(PCPPs). Such bounds are notoriously hard to get, and indeed the only such bounds we are aware
of are those in [BHLM09], which are restricted to special setting of 3-query PCPPs. We remark
that our framework captures PCPPs, and that in light of the rate lower bounds it allowed us to
obtain for relaxed LDCs, it seems feasible to obtain rate lower bounds on PCPPs as well.

Open question 2. Can we obtain rate lower bounds on q-query PCPs of proximity for q > 3?

Another interesting question involves the optimality of our transformation. Recall that Theorem 1
transforms q-query robust local algorithms into sample-based local algorithms with sample complexity
n1−1/O(q2 log2 q), whereas in Section 7.3 we show that any such transformation must yield an algorithm
with sample complexity n1−1/Ω(q). This still leaves a quadratic gap in the dependency on query
complexity. We remark that closing this gap could lead to fully resolving an open question raised in
[BGH+06] regarding the power of relaxed LDCs.

Open question 3. What is the optimal sample complexity obtained by a transformation from
robust local algorithms to sample-based local algorithms?

Note, moreover, that we focus on query (or sample) complexities and provide a computationally
inefficient transformation, iterating over exponentially many input strings; the computational cost
of such transformations is an interesting problem in its own regard.

Open question 4. Are there efficient transformations from robust to sample-based algorithms?

Finally, in Section 1.2 we discuss an application of our main result to privacy-preserving local
computation, where one can compute one out of a large collection of functions without revealing
information regarding which function was computed.11 While Theorem 1 implies such a scheme that
only requires probing the input in sublinear locations, the number of probes is quite high. Moreover,
by the near-tightness of our result, we cannot expect a significant improvement of this scheme.

Nevertheless, we find it very interesting to explore whether for structured families of functions
(as, for example, admitted by the canonical tester for dense graphs in [GT03]), or for statistical
or computational notions of privacy (i.e., where the distributions of queries obtained from each
function are statistically close, or indistinguishable to a computationally bounded adversary), the
query complexity of this scheme can be significantly reduced.

Open question 5 (Private testing of small families). Do there exist schemes for private local
computation with small query complexity?

11Borrowing terminology from zero-knowledge, we can call this notion of privacy perfect – as opposed to statistical
or computational – as the query pattern is completely independent from the choice of function.
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Organisation

The rest of the paper is organised as follows. In Section 2, we provide a high-level technical overview
of the proof of our main result and its applications. In Section 3, we briefly discuss the preliminaries
for the technical sections. In Section 4, we present our definition of robust local algorithms and
show how to cast various types of algorithms in this framework. In Section 5, we provide an arsenal
of technical tools, including relaxed sunflower lemmas and a sampling lemma that builds on the
Hajnal–Szemerédi theorem. In Section 6, we use the foregoing tools to prove Theorem 1. Finally, in
Section 7, we derive our applications to coding theory, property testing, and proofs of proximity.

2 Technical overview

In this section, we outline the techniques used and developed in the course of proving Theorem 1
and its applications. Our techniques build on and simplify ideas from [FLV15, GL21], but are
significantly more general and technically involved, and in particular, offer novel insight regarding
adaptivity in local algorithms.

Our starting point, which we outline in Section 2.1, generalises the techniques of [GL21] (which
are, in turn, inspired by [FLV15]) to the setting of robust local algorithms. Then, in Section 2.2,
we identify a key technical bottleneck in previous works: adaptivity. We discuss the fundamental
challenges that adaptivity imposes, and in Section 2.3 we present our strategy for meeting these
challenges and the tools that we develop for dealing with them, as well as describe our construction.
Subsequently, in Section 2.4, we provide an outline of the analysis of our construction, which relies
on the Hajnal–Szemerédi theorem to sample from structured set systems we call daisies.

The setting. Recall that our goal is to transform a robust (query-based) local algorithm into
a sample-based algorithm with sublinear sample complexity. Towards this end, let M be a
(ρ0, ρ1)-robust local algorithm for computing a function f : {0, 1}n → {0, 1}.12 Since we also need
to deal with one-sided robustness, assume without loss of generality that ρ1 = 0 and ρ := ρ0 = Ω(1).
Recall that the algorithm M receives query access to a string x ∈ {0, 1}n, flips at most r random
coins, makes at most q queries to this string and outputs f(x) ∈ {0, 1} with probability at least
1− σ.

For simplicity of exposition, we assume that the error rate is σ = Θ(1/q), the query complexity
is constant (q = O(1)), and the randomness complexity r is bounded by log(n) +O(1). We remark
that the analysis trivially extends to non-constant values of q, and that we can achieve the other
assumptions via simple transformations, which we provide in Section 5.4, at the cost of logarithmic
factors in q. In the following, our aim is to construct a sample-based local algorithm N for computing
the function f , with sample complexity O

(
n1−1/2q2

)
= n1−1/O(q2).

2.1 The relaxed sunflowers method

As a warm-up, we first suppose that the algorithm M is non-adaptive. (This section gives an
overview of the techniques of [GL21], which suffice in the non-adaptive case.) Then we can simply
represent M as a distribution µ over a collection of query sets S, where each S ∈ S is a subset of

12In general, the function f may depend on an explicitly given parameter (e.g., an index for decoding in the case of
relaxed LDCs), but for simplicity of notation, we omit this parameter in the technical overview.
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[n] of size q, and predicates {fS : {0, 1}q → {0, 1}}S∈S , as follows. The algorithm M draws a set
S ∈ S according to µ, queries S, obtains the local view x|S (i.e., x restricted to the coordinates in
S), and outputs fS(x|S).

Consider an algorithm N that samples each coordinate of the string x independently with
probability p = 1/n1/2q2 (and aborts in the rare event that this exceeds the desired sample
complexity).13 Naively, we would have liked Nx to emulate an invocation of the algorithm M by
sampling the restriction of x to a query set S ∼ µ.

Indeed, if the distribution µ is “well spread”, the probability of obtaining such a local view
of M is high. Suppose, for instance, that all of the query sets are pairwise disjoint. In this
case, the probability of N sampling any particular local view is pq, and we expect N to obtain
Ω(pqn) = Ω(n1−1/2q) local views (recall that the support size of µ, i.e., the number of query sets, is
O(n) by our assumption of log n + O(1) randomness complexity). However, if µ is concentrated
on a small number of coordinates, it is highly unlikely that N will obtain a local view of M . For
example, if M queries the first coordinate of x with probability 1, then we can obtain a local view
of M with probability at most p, which is negligible.

Fortunately, we can capitalise on the robustness condition to deal with this problem. We first
illustrate how to do so for an easy special case, and then deal with the general setting.

Special case: sunflower query set. Suppose that µ is concentrated on a small coordinate set
K and is otherwise disjoint, i.e., the support of µ is a sunflower with kernel K of size at most ρn;
see Fig. 2a. Since the query sets are disjoint outside of K, by the discussion above we will sample
many sets except for the coordinates in K (i.e., sample the petals of the sunflower). Recall that if
x is such that f(x) = 0, then the (ρ, 0)-robust algorithm M outputs 0, with high probability, on
any input y that is ρ-close to x. Thus, even if we arbitrarily assign values to K and use them to
complete sampled petals into full local views, we can emulate an invocation of M that will output
as it would on x.

If all inputs in the promise of M were robust (as is the case for LDCs, but not for testers,
relaxed LDCs,14 and PCPPs), then the above would suffice. However, recall that we are not ensured
robustness when x is such that f(x) = 1. To deal with that, we can enumerate over all possible
assignments to the kernel K, considering the local views obtained by completing sampled petals into
full local views by using each kernel assignment to fill in the values that were not sampled. Observe
that: (1) when the input x is a 1-input and N considers the kernel assignment that coincides with
x, a majority of local views (a fraction of at least 1− σ) will lead Mx to output 1; and (2), when x
is a 0-input, a minority of local views (a fraction of at most σ) will lead Mx to output 1 under any
kernel assignment.

The sample-based algorithm N thus outputs 1 if and only if it sees, for some kernel assignment, a
majority of local views that lead M to output 1. Recall that there is asymmetry in the robustness of
M (while 0-inputs are robust, 1-inputs are not), which translates into asymmetric output conditions
for N . Note, also, that correctness of this procedure for 0-inputs requires that not even a single
kernel assignment would lead N to output incorrectly; but our assumption on the error rate ensures
that the probability of sampling a majority of petals whose local views will lead to an error is
sufficiently small to tolerate a union bound over all kernel assignments, as long as |K| is small

13This choice of p will be made clear in Section 2.4; see Footnote 21.
14The type of robustness that relaxed LDCs admit is slightly more subtle, since it deals with a larger alphabet that

allows for outputting ⊥. See discussion in Section 7.2.
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(a) A sunflower with one of its sets shaded.
The intersection of any two sets results in
the same set, the kernel.

(b) A daisy with its kernel shaded, whose boundary
is the dashed line. Outside the kernel each point is
covered by a bounded number of petals.

Figure 2: Sunflowers and daisies.

enough.

General case: extracting a heavy daisy from the query sets. Of course, the combinatorial
structure of the query sets of a local algorithm is not necessarily a sunflower and may involve many
complex intersections. While we could use the sunflower lemma to extract a sunflower from the
collection of query sets, we stress that the size of such a sunflower is sublinear, which is not enough
in our setting (as we deal with constant error rate).

Nevertheless, we can exploit the robustness of M even if its query sets only have the structure
of a relaxed sunflower, referred to as a daisy, with a small kernel. Loosely speaking, a t-daisy is a
sunflower in which the kernel is not necessarily the intersection of all petals, but is rather a small
subset such that every element outside the kernel is contained in at most t petals;15 see Fig. 2b
(and see Section 5.1 for a precise definition).

Using a daisy lemma [FLV15, GL21], we can extract from the query sets (the support of µ) of
the robust local algorithm M a t-daisy D with t roughly equal to ni/q and a kernel K of size roughly
n1−i/q, where i ∈ [q] bounds the size of the petals of D. Moreover, the weight µ(D) =

∑
S∈D µ(S)

is significantly larger than the error rate σ of M (recall that we assumed a sufficiently small
σ = Θ(1/q)). Thus, even if the daisy contains all local views that lead to an error, their total weight
would still be small with respect to that of local views leading to a correct decision; hence, the
query sets in the daisy D well-approximate the behaviour of M , and we can disregard the sets in
the support of µ that do not belong to D at the cost of a negligible increase to the error rate.

Crucially, the intersection bound t implies that sampling a daisy is similar to sampling a
sunflower : since petals do not intersect heavily, with high probability many of them are fully queried
(as is the case with sunflowers). The bound on |K|, on the other hand, allows us to implement the
sampling-based algorithm we discussed for the sunflower case, except with respect to a daisy. The
kernel is sufficiently small so that the output of M is unchanged under any assignment to K, and
suffices to tolerate a union bound when considering all possible assignments to K.

It follows that the daisy D provides enough “sunflower-like” structure for the sample-based
algorithm N defined previously to succeed, with high probability, when it only considers the query
sets in D and enumerates over all assignments to its kernel.

15In Definition 5.1, a t-daisy has t as a function from [q] to N and allows for a tighter bound on the number of
intersecting petals. We use the simplified definition of [GL21] in this technical overview.
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2.2 The challenge of adaptivity

Let us now attempt to apply the transformation laid out in the previous section to a robust local
algorithm M that makes q adaptive queries. In this case, M may choose to query distinct coordinates
depending on the answers to its previous queries, and thus there is no single distribution µ that
captures its query behaviour.

Observe that now, rather than inducing a distribution on sets, the algorithm M induces a
distribution over decision trees of depth q, as the behaviour of a randomised query-based algorithm
Mx can be described by choosing a decision tree according to its random string, then performing the
adaptive queries according to the evaluation of that tree on the input x ∈ {0, 1}n. By our assumption
on the randomness complexity of M , this distribution is supported on Θ(n) decision trees. Note
that for any fixed input x, the decision tree collapses to a path, and hence the distribution over
decision trees induces a distribution over query sets, which we denote µx (see Fig. 3).

A naive way of transitioning from decision trees to sets is by querying all of the branches of each
decision tree. Alas, doing so would increase the query complexity of M exponentially from q to
(more than) 2q, which would in turn lead to a sample-based algorithm with a much larger sample
complexity than necessary. Thus, we need to deal with the far more involved structure induced by
distributions over decision trees, which imposes significant technical challenges. For starters, since
our technical framework inherently relies on a combinatorial characterisation of algorithms, we first
need to find a method of transitioning from decision trees to (multi-)sets without increasing the
query complexity of the local algorithm M .

To this end, a key idea is to enumerate over all random strings and their corresponding decision
trees, and extract all q-sets (i.e., sets of size q) corresponding to each branch of each tree. This leaves
us with a combinatorial multi-set S (as multiple random strings may lead to the same decision
tree, and branches of distinct decision trees may query the same set) with Θ(2q · n) = Θ(n) query
sets, of size q each, corresponding to all possible query sets induced by all possible input strings.16

Note that S contains the elements of the support of µx for all inputs x ∈ {0, 1}n and that, for
any fixed input x, the vast majority of these query sets may not be relevant to this input: each
S ∈ S \ supp(µx) corresponds to a branch of a decision tree that the bits of x would have not led to
query.

This already poses a significant challenge to our approach, as we would have liked to extract a
heavy daisy D from the collection S which well-approximates the query sets of M independently
of any input. However, it could be the case that the sets that are relevant to an input x (i.e.,
supp(µx)) induce a completely different daisy (with potentially different kernels over which we’ll
need to enumerate) than the relevant sets for a different input y that differs from x on the values in
the kernel, and so it is not clear at all that there exists a single daisy that well-approximates the
query behaviour of the adaptive algorithm M for all inputs.

Furthermore, the above also causes problems with the kernel enumeration process. For each
assignment κ to the kernel K, denote by xκ ∈ {0, 1}n the word that takes the values of κ in K and
the values of x outside of K. Recall that the crux of our approach is to simulate executions of Mxκ ,
for each kernel assignment κ, using the values of the sampled petals and plugging in the kernel
assignment to complete these petals into local views (assignments to full query sets). Hence, since
relevant sets corresponding to different kernel assignments may be distinct, it is unclear how to rule
according to the local views that each of them induce.

16We remark that this treatment of multi-sets allows us to significantly simplify the preparation for combinatorial
analysis that was used in previous works involving sunflowers and daisies.
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Figure 3: Decision tree of a 3-local algorithm. When the input x is such that x1 = 1, x3 = 0 and x5 = 0, the
branch highlighted in blue (and dashed) queries {1, 3, 5} and outputs 1. When x1 = 0 and x4 = 1, this tree
induces the query set {1, 2, 4}; when x1 = 1 and x3 = 0, it induces the set {1, 3, 5}. This “collapsing” of the
query behaviour is illustrated on either side of the tree.

We overcome these challenges in the next section with a more sophisticated extraction of daisies
that, crucially, does not discard any query sets of the adaptive algorithm M . Specifically, we will
partition the (multi)-collection of all possible query sets into a collection of daisies and simultaneously
analyse all daisies in the partition to capture the adaptive behaviour of the algorithm.

2.3 Capturing adaptivity in daisy partitions

Relying on techniques from [FLV15, GL21], we can not only extract a single heavy daisy, but
rather partition a (multi-)collection of query sets into a family of daisies, with strong structural
properties on which we can capitalise. This allows us to apply our combinatorial machinery without
dependency on a particular input, and analyse all daisies simultaneously.

Daisy partition lemma. A refinement of the daisy lemma in [GL21], which we call a daisy
partition lemma (Lemma 5.2), partitions a multi-set S of q-sets into q + 1 daisies {Di : 0 ≤ i ≤ q}
(see Fig. 4) with the following structural properties.

1. D1 is a n1/q-daisy, and for i > 1, each Di is a t-daisy with t = n(i−1)/q;

2. The kernel K0 of D0 coincides with that of D1, and, for i > 0, the kernel Ki of Di satisfies
|Ki| ≤ q|S| · n−i/q;

3. The petal S \Ki of every S ∈ Di has size exactly i.

Moreover, the kernels form an incidence chain Kq = ∅ ⊆ Kq−1 ⊆ · · · ⊆ K1 = K0. Note that D0 is
vacuously a t-daisy for any t, since its petals are empty; and that our assumption on the randomness
complexity of M implies |Ki| = O(n1−i/q) when i > 0.

We may thus apply the daisy partition lemma to S and assert that, for any input x, there exists
some i ∈ {0, . . . , q} such that µx(Di) is larger than 1/q (recall that, for all x, the support of µx is
contained in S); that is, each input may lead to a different heavy daisy, but there will always be at
least one daisy that well-approximates the behaviour of the algorithm on input x. Alas, with only a
local view of the input word, we are not able to tell which daisies are heavy and which are not.

It is clear, then, that a sample-based algorithm that makes use of the daisy partition has to
rule not only according to a single daisy, but rather according to all of them. But how exactly it
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(a) A collection S of 3-sets before being parti-
tioned.

(b) The collection S partitioned into 4 daisies: D0

(shaded flat, grey), D1 (checkerboard, green), D2

(dotted, blue) and D3 (triangle pattern, red).

(c) D0, whose sets are
entirely contained in the
kernel K0.

(d) D1 with K1 = K0,
where each S ∈ D1 has
a petal S \K1 of size 1.

(e) D2 with K2 ⊆ K1,
where each S ∈ D2 has
a petal S \K2 of size 2.

(f) D3, with (empty) ker-
nel K3 = ∅. Each query
set S ∈ D3 has a petal
S \K3 = S of size 3.

Figure 4: Daisy partition.

should do so is a nontrivial question to answer, given that there are multiple daisies (and kernels)
potentially interfering with one another.

Adaptivity in daisy partitions. A natural approach for dealing with multiple daisies simulta-
neously is by enumerating over every assignment to all kernels (i.e., to ∪iKi) and, for each such
assignment, obtaining local views from all daisies and ruling according to the aggregated local views.
Note that the incidence chain structure implies that enumerating over assignments to K0 suffices,
since each assignment to K0 induces assignments to Ki for all i.

However, this approach leads to fundamental difficulties. Recall that correctness of the sample-
based algorithm on 0-inputs depends on no kernel assignment causing an output of 1. Although
for any assignment to Ki this happens with sufficiently small probability to ensure it is unlikely to
happen on all 2|Ki| assignments simultaneously, this does not hold true for assignments to larger
kernels. More precisely, since |Ki−1| may be larger than |Ki| by a factor of n1/q, an error rate that
is preserved by 2|Ki| assignments becomes unbounded if the number of assignments increases to
2|Ki−1|. This leads us to only consider, for query sets in Di, assignments to Ki rather than to the
union of all kernels.

Put differently, we construct an algorithm that deals with each daisy independently, and whose
correctness follows from a delicate analysis that aggregates local views taken from all daisies, which
we outline in Section 2.4. We begin by considering a sample-based local algorithm N that extends
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the strategy we used for a single daisy as follows. On input x ∈ {0, 1}n, it:

(1) samples each coordinate of the string x independently with probability p = 1/n1/2q2 ;
(2) for each i ∈ {0, . . . , q} and each assignment κ to the kernel Ki of the daisy Di, outputs 1 if a

majority of local views leads M to output 1; and
(3) outputs 0 if no such majority is ever found.

First, note that since the algorithm N is constructed in a white-box manner, it has access to
the description of all decision trees induced by the query-based algorithm M . Hence Nx is able
to determine which local views correspond to a valid execution of M . Denoting by Q the set of
coordinates that were sampled, an assignment κ to Ki induces, for each query set S ⊂ Q ∪Ki, the
assignment xκ|S ; the sample-based algorithm N can check whether each such S is a relevant query
set (i.e., belongs to the support of µxκ) by verifying it arises from some branch of a decision tree
of M that xκ would have led to query. This allows N to ignore the non-relevant query sets and
overcome the difficulty pointed out in the previous section.17

However, we remain with the issue that motivated searching for heavy daisies in the first place:
there is no guarantee that every Di well-approximates the algorithm M on all inputs. This is due
to the use of relative estimates: if x is a 0-input and µx(Di) is smaller than the error rate σ, even
when N considers the correct kernel assignment x|Ki

with respect to x, it may find a majority of
local views that leads Mx to output 1; indeed, nothing prevents all the “bad” query sets, which
lead Mx to erroneously output 1, from being placed in the same daisy Di.

The solution is to use a simpler decision rule: absolute rather than relative. We count the
number of local views leading to an output of 1, outputting 1 if and only if it crosses a threshold.
The upper bound σ on the weight of “bad” query sets limits their number, and a large enough
threshold prevents them from causing an incorrect output even if no local view leads to the correct
one. Note that a different threshold τi is needed for each daisy Di, since the probability of sampling
petals decreases as i increases. The thresholds τi must thus be carefully set to take this into account.

Finally, note that whenever the daisy D0 leads to an output of 1, this happens (almost)
independently of the input : the assignment to every S ∈ D0 is determined solely by the assignment
to K0, because S ⊂ K0. Therefore, the sample-based algorithm N disregards D0 in its execution.

The algorithm. By the discussion above, we obtain the following description for the sample-based
algorithm Nx (with some parameters that we will set later).

1. Sample each coordinate of x independently with probability p = 1/n1/2q2 . If the number of
samples exceeds the desired sample complexity, abort.

2. For every i ∈ [q] and every assignment κ to Ki, perform the following steps.

(a) Count the number of sets in Di with local views that lead M to output 1, which are
relevant for the assignment κ and the queried values. If i = 1, discard the sets whose
petals are shared by at least α local views.18

17We remark that in the accurate description of our construction (see Section 6.1), we capture all the information
contained in the decision trees via tuples that contain, besides the query set, the assignment that led to it being
queried as well as the output of the algorithm when it does so. The daisy partition lemma then allows to partition
these tuples based on the structure of the sets they contain.

18The extra condition for i = 1 is necessary to deal with the looser intersection bound t = n1/q > n(i−1)/q on D1.
We discuss this in the next section.
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(b) If the number is larger than the threshold τi, output 1.

3. If every assignment to every kernel failed to trigger an output of 1, then output 0.

In the next section we will present key technical tools that we develop and apply to analyse this
algorithm, as well as discuss the parameters τi = γi · npi (where γi = Θ(1)) and α = Θ(1), and show
it indeed suffices for the problem we set out to solve.

2.4 Analysis using a volume lemma and the Hajnal–Szemerédi theorem

To establish the correctness of the aforementioned sample-based algorithm, we shall first need two
technical lemmas about sampling daisies. We will then proceed to provide an outline of the analysis
of our algorithm.

2.4.1 Two technical lemmas

We sketch the proofs of two simple, yet important technical lemmas that will be paramount to our
analysis: (1) a lemma that allows us to transition from arguing about probability mass to arguing
about combinatorial volume; and (2) a lemma that allows us to efficiently analyse sampling petals
of daisies with complex intersection patterns.

The volume lemma. We start by showing how to derive from the probability mass of query sets
(i.e., the probability under µx when the input is x) a bound on the volume that the union of these
query sets cover. This is provided by the following volume lemma, which captures what is arguably
the defining structural property of robust local algorithms.

Recall that the sample-based algorithm N uses the query sets of a (ρ, 0)-robust algorithm M
with error rate σ, which comprise the support of the distributions µx for all inputs x. Intuitively,
these sets cannot be too concentrated (i.e., cover little volume), as otherwise slightly corrupting
a word (in less than ρn coordinates) could require M to output differently, a behaviour that is
prevented by the robustness of M . This intuition is captured by the following volume lemma.

Lemma 2.1 (Lemma 5.6, informally stated). Let x ∈ {0, 1}n be a non-robust input (a 1-input in
our case) and S be a subcollection of query sets in the support of µx. If S covers little volume (i.e.,
∪S < ρn), then it has small weight (i.e., µx(S) < 2σ).

We stress that the robustness of the 0-inputs yields the volume lemma for 1-inputs.19 Note that
the contrapositive of the volume lemma yields a desirable property for our sample-based algorithm:
for any (non-robust) 1-input x, the query sets in supp(µx) must cover a large amount of volume, so
that we can expect to sample many such sets.

The Hajnal–Szemerédi theorem. Once we establish that a daisy covers a large volume, it
remains to argue how this affects the probability of sampling petals from this large daisy, which is
a key component of our algorithm. Recall that sampling the petals of a sunflower is trivial to do.
However, with the complex intersection patterns that the petals of a daisy could have, we need a
tool to argue about sampling petals of daisies.

19This is a rather subtle consequence of adaptivity; in the nonadaptive setting a symmetric volume lemma for
b-inputs can be shown using robustness on b-inputs, for b ∈ {0, 1}.
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First, recall that the daisy partition lemma ensures that each Di is a t-daisy where t =
nmax{1,i−1}/q, for all i. Observe that if Di is a 1-daisy (which we call a simple daisy), that is, each
point outside the kernel Ki is contained in at most one set S ∈ Di, then the sets in Di have pairwise
disjoint petals, so sampling them is exactly like sampling petals of a sunflower: these petals are
sampled independently from one another, and we expect their number to be concentrated around
the expectation of pi|Di| (recall that all petals have size i).

Of course, there is no guarantee that Di is a simple daisy, though we expect it to contain a
simple daisy if it is large enough. Indeed, greedily removing intersecting sets yields a simple daisy of
size Θ(|Di|/t), but this does not suffice for our purposes because most of the sets in Di are discarded.

Instead, we rely on the Hajnal–Szemerédi theorem to obtain a “lossless” transition from a t-daisy
to a collection of simple daisies, from which sampling petals is easy. The Hajnal–Szemerédi theorem
shows that for every graph G with m vertices and maximum degree ∆, and for any k ≥ ∆+1, there
exists a k-colouring of the vertices of G such that every colour class has size either ⌊m/k⌋ or ⌈m/k⌉.
By applying this theorem to the incidence graph of the petals of query sets (i.e., the graph with
vertex set Di where we place an edge between S and S′ when (S ∩ S′) \Ki ≠ ∅), which satisfies
∆(G) ≤ 2t (see Claim 5.3) we obtain a partition of Di into t simple daisies of the same size (up to
an additive error of 1), and hence obtain stronger sampling bounds.

2.4.2 Analysis

Note that the probability that N samples too many coordinates (thus aborts) is exponentially small,
hence we assume hereafter that this event did not occur.

We proceed to sketch the high-level argument of the correctness of the sampled-based algorithm
N , described in the previous section, making use of tools above. This follows from two claims that
hold with high probability: (1) correctness on non-robust inputs, which ensures that when x is a
1-input (i.e., is non-robust), there exists i ∈ [q] such that when N considers the kernel assignment
x|Ki

(which coincides with the input), the number of local views that lead to output 1 crosses the
threshold τi; and (2) correctness on robust inputs, which, on the other hand, ensures that when x
is a 0-input (i.e., is robust), for every kernel Ki and every kernel assignment, the number of local
views that lead to output 1 does not cross the threshold τi.

In the following, we remind that when the sample-based algorithm N considers a particular
assignment κ to a kernel and counts the number of local views that lead to output 1, the algorithm
only considers views that are relevant to xκ (the input x where the values of its kernel are replaced
by κ); that is, local views that arise from some branch of a decision tree of the adaptive algorithm
M that would have led it to query these local views. While N does not know all of x, after collecting
samples from x and considering the kernel assignment κ, it can check which local views are relevant
to xκ (see discussion in Section 2.3).

Correctness on non-robust inputs. We start with the easier case, where x is a non-robust
input (in our case, f(x) = 1). We show that there exists i ∈ [q] such that when N considers
the kernel assignment x|Ki

, the number of local views that lead to output 1 crosses the threshold
τi = γi · npi. We begin by recalling that N disregards the daisy D0, whose query sets are entirely
contained in the kernel K0, and arguing that this leaves sufficiently many query sets that lead to
output 1. Indeed, while we could not afford this if D0 was heavily queried by M given the 1-input x
(i.e., if µx(D0) is close to 1 − σ), an application of the volume lemma shows this is not the case:
since |K0| = o(n), this volume is smaller than ρn, implying µx(D0) < 2σ for all 1-inputs x.
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Apart from D0, the query sets in the daisy D1 whose petals are shared by at least α local
views (for a parameter α to be discussed shortly) are also discarded, and we need to show that the
loss incurred by doing so is negligible as well. This is accomplished with a slightly more involved
application of the volume lemma: since the sets of D1 have petals of size 1, the subcollection C ⊆ D1

of sets that are discarded covers a volume of at most |K1|+ |C|/α. For a sufficiently large choice of
a constant α > 0, we have |C|/α ≤ ρn/2 (recall that C ⊆ supp(µx) and |supp(µx)| = Θ(n) by the
assumption on the randomness complexity of M). Since |K1| = o(n) and in particular |K1| < ρn/2,
applying the volume lemma to C shows that µx(C) < 2σ.

Finally, the total weight of all query sets in supp(µx) that lead to output 0 is at most σ (by
definition of the error rate σ). This implies that the subcollection of supp(µx) that leads to output
1 and is not disregarded has weight at least 1− 2σ − 2σ − σ = 1− 5σ, and, for a sufficiently small
value of σ (recall that σ = Θ(1/q)), we have 1− 5σ ≥ 1/2.

We now shift perspectives, and in effect use the volume lemma in the contrapositive direction:
large weights imply large volumes. By a simple averaging argument, it follows that at least one
daisy Di has weight at least (1− 5σ)/q ≥ 2σ, and thus, by the volume lemma, covers at least ρn
coordinates. Therefore, since |supp(µx)| = Θ(n) and µx is uniform over a multi-collection of query
sets, this daisy contains Θ(n) “good” sets (that lead to output 1 and were not discarded). For the
analysis, using the Hajnal–Szemerédi theorem, we partition the t-daisy Di into t simple daisies of
size Θ(n/t). Each such simple daisy has disjoint petals of size i, so that Ω(npi/t) petals will be
sampled except with probability exp

(
−Ω(npi/t)

)
. Finally, this implies that, by setting γi = Θ(1)

small enough, when N considers the kernel assignment x|Ki
to Ki, at least τi = γi · npi petals are

sampled except with probability

O(t) · exp
(
−Ω

(
npi

t

))
= exp

(
−Ω

(
n
1−max{1,i−1}

q
− i

2q2

))
= o(1).

(Recall that t = nmax{1,i−1}/q and the sampling probability is p = 1/n1/2q2 .)

Correctness on robust inputs. It remains to show the harder case: when x is a robust input
(in our case, f(x) = 0), then all kernel assignments to all daisies will make the local views that
lead to output 1 fail to cross the threshold. This case is harder since, by the asymmetry of N with
respect to robust and non-robust inputs, here we need to prove a claim for all kernel assignments
to all daisies, whereas in the non-robust case above we only had to argue about the existence of a
single assignment to a single kernel.

We begin with a simple observation regarding D0, then analyse the daisies Di for i > 1, and
deal with the more delicate case of D1 last. Recall that D0 is disregarded by the algorithm N ,
and that by the asymmetry of N with respect to 0- and 1-inputs, this only makes the analysis on
robust inputs easier. Indeed, Nx is correct when no kernel assignment to any of the Di’s leads to
crossing the threshold τi of local views on which the query-based algorithm M outputs 1. Thus, by
discarding the query sets in D0, we only increase the probability of not crossing these thresholds.

Fix i > 0 and an arbitrary kernel assignment κ to Ki. Then, the relevant sets that N may
sample are those in the support of µxκ (recall that xκ is the word obtained by replacing the bits
of x whose coordinates lie in Ki by κ). Since |Ki| = o(n), it follows by the robustness of x that
xκ is ρ-close to x, and thus the weight of the collection O ⊆ supp(µxκ) of query sets that lead to
output 1 is at most σ. For the sake of this technical overview, we focus on the worst-case scenario,
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where all of these “bad” sets are in the daisy Di (i.e., O ⊆ Di) and |O| is as large as possible (i.e.,
|O| = Θ(n)), and show that even that will not suffice to cross the threshold τi.

By the randomness complexity of the algorithm M , the size of O is Θ(n). We apply the
Hajnal–Szemerédi theorem and partition O into Θ(t) simple daisies of size Θ(n/t). Recall that the
petals of query sets in Di have size i and are disjoint; therefore, each of these simple daisies has
γi · npi/t sampled petals with probability only exp

(
−Ω(npi/t)

)
.20 By an averaging argument, the

total number of sampled petals crosses τi = γi · npi with probability at most

O(t) · exp
(
−Ω

(
npi

t

))
= exp

(
−Ω

(
n
1− i−1

q
− i

2q2

))
= exp

(
−Ω

(
n
1− i

q
+ 1

2q

))
;

recall that t = n(i−1)/q and the sampling probability is p = 1/n1/2q2 , so pi ≥ 1/n1/2q. Since the
daisy partition lemma yields a bound of O(n1−i/q) for the size of the kernel Ki, a union bound over
all 2|Ki| kernel assignments ensures the threshold is crossed with probability o(1).21

We now analyse D1 and stress that the need for a separate analysis arises from the looser
intersection bound on this daisy: D1 is a t-daisy with t = n1/q, whereas for all other i the bound
is t = n(i−1)/q. This implies that there is no “gap” between the expected number of queried
petals in each simple daisy Θ(np/t) = Θ(n1−1/q−1/(2q2)) = o(n1−1/q) and the size of the kernel
|K1| = O(n1−1/q), so a union bound as in the case i > 1 does not suffice.

This is precisely what the “capping” performed by N on D1 is designed to address: the query sets
O ⊆ supp(µxκ) that lead to output 1 will only be counted by N if their petals are shared by at most
α query sets. Then, by the Hajnal–Szemerédi theorem, we partition O into α = Θ(1) simple daisies
of size Θ(n). Each simple daisy will have more than τi/α = Θ(np) queried petals with probability at
most exp(−Ω(np)), so that the total number of such petals across all simple daisies exceeds τj with

probability at most exp(−Ω(np)). This provides the necessary gap: as Θ(np) = Ω(n1−1/2q2) and
|K1| = O(n1−1/q), a union bound over all 2|K1| assignments to K1 shows the threshold is crossed
with probability o(1).

This concludes our high-level proof of correctness, and thus of Theorem 1 (see Section 6.2 for the
full proof). For an overview of how to derive our applications from Theorem 1, see Section 7.

3 Preliminaries

Throughout this paper, constants are denoted by Greek lowercase letters, such as α, β and γ; capital
letters of the Latin alphabet generally denote sets (e.g. P and S) or algorithms (e.g., M and N).
For each n ∈ N, we denote by [n] the set {1, . . . , n}. Sets S such that |S| = q are called q-sets. The
complement of S is denoted S. We will use Σ to denote an alphabet.

As integrality issues do not substantially change any of our results, equality between an integer
and an expression (that may not necessarily evaluate to one) is assumed to be rounded to the
nearest integer.

20We stress that the expected number of sampled petals is smaller in the robust case than in the non-robust one. This
is what allows us to show the total number of queried petals is at least τi = γinp

i with probability exp
(
−Ω(npi/t)

)
in

the robust case but 1− exp
(
−Ω(npi/t)

)
in the non-robust, for the same constant γi.

21Recall that we set the sampling probability to be p := 1/n1/β with β = 2q2. This choice is justified as follows: the
union bound requirement that 2|Ki| multiplied by the probability of crossing the threshold be small translates into
1/q − i/β > 0 for all i ∈ [q − 1]. Then i = q − 1 requires β = Ω(q2).
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Multi-sets of sets. To prevent ambiguity, we call (multi-)sets comprised of objects other than
points (such as sets, trees or tuples) (multi-)collections in this work, and denote them by the
calligraphic capitals D,S, T .

Distance and proximity. We denote the absolute distance between two strings x, y ∈ Σn (over
the alphabet Σ) by ∆̄(x, y) := |{xi ̸= yi : i ∈ [n]}| and their relative distance (or simply distance)

by ∆(x, y) := ∆̄(x,y)
n . If ∆(x, y) ≤ ε, we say that x is ε-close to y, and otherwise we say that x is

ε-far from y. The (Hamming) ball of radius ε around x is Bε(x) = {y ∈ Σn : y is ε-close to x}, and
the ball Bε(S) around a set S ⊆ Σn is the union over Bε(x) for each x ∈ S.

Probability. The uniform distribution over a set S is denoted US . We write X ∼ µ to denote a
random variable X with distribution µ; the probability of event [X = s] is interchangeably referred
to as weight, and is denoted Pr[X = s] (the underlying distribution will be clear from context), and
the expected value of X is E[X]. We also write |µ| as shorthand for |supp(µ)|, the support size of µ.
Below is the version of the Chernoff bound that will be used in this work.

Lemma 3.1 (Chernoff bound). Let X1, . . . , Xk be independent Bernoulli random variables distributed
as X. Then, for every δ ∈ [0, 1],

Pr

[
1

k

k∑
i=1

Xi ≥ (1 + δ)E[X]

]
≤ e−

δ2kE[X]
3 and

Pr

[
1

k

k∑
i=1

Xi ≤ (1− δ)E[X]

]
≤ e−

δ2kE[X]
2 .

Algorithms. We denote by Mx(z) the output of algorithm M given direct access to input z and
query access to string x. Probabilistic expressions that involve a randomised algorithm M are taken
over the inner randomness of M (e.g., when we write Pr[Mx(z) = s], the probability is taken over the
coin tosses of M). The number of coin tosses M makes is its randomness complexity. The maximal
number of queries M performs over all strings x and outcomes of its coin tosses is interchangeably
referred to as its query complexity or locality q. When q = o(n), where n is the length of the string
x, we say M is a (q-)local algorithm. If the queries performed by M are determined in advance
(so that no query depends on the result of any other query), M is non-adaptive; otherwise, it is
adaptive. Finally, if M queries each coordinate independently with some probability p, we say it is a
sample-based algorithm. Since we will want to have an absolute bound on the sample complexity
(i.e., the number of coordinates sampled) of sample-based algorithms, we allow them to cap the
number of coordinates they sample.

Notation. We will use the following, less standard, notation. An assignment to a set S (over
alphabet Σ) is a function a : S → Σ, which may be equivalently seen as a vector in Σ|S| whose
coordinates correspond to elements of S in increasing order. Its restriction to P ⊆ S is denoted
a|P . If x is an assignment to S and κ is an assignment to P ⊆ S, the partially replaced assignment
xκ ∈ Σn is that which coincides with κ in P and with x in S \P (i.e., xκ|P = κ and xκ|S\P = xS\P ).
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Adaptivity. Adaptive local algorithms are characterised in two equivalent manners: a standard
description via decision trees and an alternative that makes more direct use of set systems. Let M
be a q-local algorithm for a decision problem (i.e., which outputs an element of {0, 1}) with oracle
access to a string over alphabet Σ and no access to additional input (what follows immediately
generalises by enumerating over explicit inputs).

The behaviour of M is completely characterised by a collection {(Ts, s) : s ∈ {0, 1}r} of decision
trees, where r is the randomness complexity of M ; the trees are |Σ|-ary, have depth q, edges labeled
by elements of Σ, inner nodes labeled by elements of [n] and leaves labeled by elements of {0, 1}.
The execution of Mx proceeds as follows. It (1) flips r random coins, obtains a string s ∈ {0, 1}r and
chooses the decision tree Ts to execute; (2) beginning at the root, for q steps, queries the coordinate
given by the label at the current vertex and follows the edge whose label is the queried value; and
(3) outputs the bit given by the label of the leaf thus reached.

Although this offers a complete description of an adaptive algorithm, we choose to use an
alternative that is amenable to daisy lemmas (see Section 5.1). This is obtained by describing
each decision tree with the collection of its branches. More precisely, from {(Ts, s) : s ∈ {0, 1}r}
we construct {(Sst, ast, bst, s, t) : s ∈ {0, 1}r, t ∈ [|Σ|q]}, where t identifies which branch the tuple
is obtained from. Sst is the q-set queried by the tth branch of Ts, while ast is the assignment to
Sst defined by the edges of this branch and bst ∈ {0, 1} is the output at its leaf. We remark that
the decision trees may be reconstructed from their branches, so that this is description is indeed
equivalent (though we will not need this fact).

We now define the distribution of an algorithm, as well as its distribution under a fixed input.

Definition 3.2 (Induced distribution). Let M be a q-local algorithm with randomness complexity r
described by the collection of decision trees {Ts : s ∈ {0, 1}r}. The distribution µ̃M of M is given
by sampling s ∈ {0, 1}r uniformly at random and taking Ts.

Fix an arbitrary input x to M and, for all s ∈ {0, 1}r, let (Sst, x|Sst
, bst, s, t) be the unique tuple

defined by the branch of Ts followed on input x. We may thus discard t and the tuple (Ss, x|Ss
, bs, s)

is well defined. The distribution µM
x is given by sampling s ∈ {0, 1}r uniformly at random and taking

the set Ss (the first element of the tuple (Ss, x|Ss
, bs, s)).

We note that the contents of the tuple (Ss, x|Ss
, bs, s) describe exactly how M will behave on

input x and random string s.

4 Robust local algorithms

We now formally introduce robust local algorithms, which capture a wide class of sublinear algorithms,
ranging from property testing to locally decodable codes. Our main result (Theorem 1) holds for any
robust local algorithm, and indeed, we obtain our results for coding theory, testing, and proofs of
proximity as direct corollaries.

While local algorithms are very well studied, their definition is typically context-dependent,
where they are required to perform different tasks (e.g., test, self-correct, decode, perform a local
computation) under different promises (e.g., proximity to encoded inputs, being either “close” to or
“far” from sets). However, structured promises on the input are (with the exception of degenerate
cases) necessary for algorithms that only make a sublinear number of queries. This feature leads
naturally to the notion of robustness, which, loosely speaking, a local algorithm satisfies if its output
is stable under small perturbations.
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In the next subsection, we provide a precise definition of robust local algorithms. Then, in the
subsequent subsections, we show how this notion captures property testing, locally testable codes,
locally decodable and correctable codes, PCPs of proximity, and other local algorithms.

4.1 Definition

We begin by defining local algorithms, which are probabilistic algorithms that receive query access
to an input x and explicit parameter z and are required to compute a partial function f(z, x) (which
represents a promise problem) by only making a small number of queries to the input x.

Definition 4.1 (Local algorithms). Let Σ be a finite alphabet, Z a finite set and {Pz : z ∈ Z} a
family of sets Pz ⊆ Σn indexed by Z. With P := {(z, x) : z ∈ Z, x ∈ Pz}, let f : P → {0, 1} be a
partial function.22 A q-local algorithm M for computing f with error rate σ receives explicit access
to z ∈ Z, query access to x ∈ Pz, makes at most q queries to x and satisfies

Pr[Mx(z) = f(z, x)] ≥ 1− σ.

The parameter q is called the query complexity of M , to which we also refer as locality. Through-
out, when we refer to a local algorithm, we mean a q-local algorithm with q = o(n). Another
important parameter is the randomness complexity of M , defined as the maximal number of coin
tosses it makes over all (z, x) ∈ Z×Σn (note that an execution Mx(z) is well-defined even if x /∈ Pz).

The following definition formalises the aforementioned natural notion of robustness, which is the
structural property that underlies local computation.

Definition 4.2 (Robustness). Let ρ > 0. A local algorithm M for computing f : P → {0, 1} is
ρ-robust at the point (z, x) ∈ P if Pr[Mw(z) = f(z, x)] ≥ 1− σ for all w ∈ Bρ(x). We say that M
is (ρ0, ρ1)-robust if, for all z ∈ Z and b ∈ {0, 1}, M is ρb-robust at every x such that f(z, x) = b.

If a local algorithm M is (ρ0, ρ1)-robust and max {ρ0, ρ1} = Ω(1) (a constant independent of n),
we simply call M robust. Note that non-trivial robustness is only possible because f is a partial
function; that is, the local algorithm M solves a promise problem where, for every parameter z, the
algorithm is promised to receive an input from Pz,0 := f−1(z, 0) on which it should output 0, or an
input from Pz,1 := f−1(z, 1) on which it should output 1.

Remark 4.3 (One-sided robustness). For our main result (Theorem 1), it suffices to have one-sided
robustness, i.e., (ρ0, ρ1)-robustness where only one of ρ0, ρ1 is non-zero. For example, in the setting
of property testing with proximity parameter ε we only have (ε, 0)-robustness (see Section 4.2 for
details). To simplify notation, we refer to (ρ, 0)-robust local algorithms as ρ-robust.

Remark 4.4 (Larger alphabets). The definition of local algorithms can be further generalised to
a constant-size output alphabet Γ, in which case the partial function is f : Σn → Γ; we assume
Γ = {0, 1} for simplicity of exposition, but note that our results extend to larger output alphabets
in a straightforward manner.

We proceed to show how to capture various well-studied families of sublinear algorithms (such
as testers, local decoders, and PCPs) using the notion of robust local algorithms.

22We remark that allowing only rectangles P = Z ×Q as the domain of f suffices for most of our applications (e.g.,
testers and local decoders), but not all. For example, in a MAP for a property Π, there may be inputs x ∈ Π that are
only contained in Pz for a single z ∈ Z. (See Section 7.3.)
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4.2 Property testing

Property testing [RS96, GGR98] deals with probabilistic algorithms that solve approximate decision
problems by making a small number of queries to their input. More specifically, a tester is required
to decide whether its input is in a set Π (i.e., has the property Π) or whether it is ε-far from any
input in Π.

Definition 4.5 (Testers). An ε-tester with error rate σ for a property Π ⊆ Σn is a probabilistic
algorithm T that receives query access to a string x ∈ Σn. The tester T performs at most q = q(ε, n)
queries to x and satisfies the following two conditions.

1. If x ∈ Π, then Pr [T x = 1] ≥ 1− σ.

2. For every x that is ε-far from Π (i.e., x ∈ Bε(Π)), then Pr [T x = 0] ≥ 1− σ.

We are interested in the regime where ε = Ω(1) (i.e., ε is a fixed constant independent of n),
and assume it to be the case in the remainder of this discussion.

Note that testers are not robust with respect to inputs in the property Π, as changing a single
coordinate of an input x ∈ Π could potentially lead to an input outside Π. Moreover, an ε-tester
does not immediately satisfy one-sided robustness, as inputs that are on the boundary of the
ε-neighbourhood of Π are not robust (see figure Fig. 1b).

However, by increasing the value of the proximity parameter by a factor of 2, we can guarantee
that every point that is 2ε-far from Π satisfies the robustness condition. The following claim
formalises this statement and shows that testers can be cast as robust local algorithms.

Claim 4.6. An ε-tester T for property Π ⊆ Σn is an (ε, 0)-robust local algorithm, with the same
parameters, for computing the function f defined as follows.

f(x) =

{
1, if x ∈ Π
0, if x is 2ε-far from Π.

Proof. By definition, the tester T is a local algorithm for computing f ; denote its error rate by σ.
We show it satisfies (one-sided) robustness with respect to f . Let x ∈ Σn be an input that is 2ε-far
from Π, and consider y ∈ Bε(x). By the triangle inequality, we have that y is ε-far from Π. Thus,
Pr [T y = 0] ≥ 1− σ, and so T is an (ε, 0)-robust local algorithm for f .

Remark 4.7 (Robustness vs proximity tradeoff). The notion of a tester with proximity parameter
ε and that of an ε-robust tester with proximity parameter 2ε coincide. Moreover, there is a tradeoff
between the size of the promise captured by the partial function f and the robustness parameter
ρ: taking any ε′ > ε, the tester T is a ρ-robust local algorithm with ρ = ε′ − ε for computing the
function

f(x) =

{
1, if x ∈ Π
0, if x is ε′-far from Π.

As ε′ increases, the robustness parameter ρ increases and the size of the domain of definition of f
decreases. In particular, taking ε′ = ε makes T a (0, 0)-robust algorithm (i.e., an algorithm that is
not robust).
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4.3 Local codes

We consider error-correcting codes that admit local algorithms for various tasks, such as testing, de-
coding, correcting, and computing functions of the message. Recall that a code C : {0, 1}k → {0, 1}n
is an injective mapping from messages of length k to codewords of blocklength n. The rate of
the code C is defined as k/n. The relative distance of the code is the minimum, over all distinct
messages x, y ∈ Σk, of ∆(C(x), C(y)). We shall sometimes slightly abuse notation and use C to
denote the set of all of its codewords

{
C(x) : x ∈ Σk

}
⊂ Σn. Note that we focus on binary codes,

but remind that the extension to larger alphabets is straightforward. In the following, we show how
to cast the prominent notions of local codes as robust local algorithms.

4.3.1 Locally testable codes

Locally testable codes (LTCs) [GS06] are codes that admit algorithms that distinguish codewords
from strings that are far from being valid codewords, using a small number of queries.

Definition 4.8 (Locally Testable Codes (LTCs)). A code C : {0, 1}k → {0, 1}n is locally testable,
with respect to proximity parameter ε and error rate σ, if there exists a probabilistic algorithm T
that makes q queries to a purported codeword w such that:

1. If w = C(x) for some x ∈ {0, 1}k, then Pr [Tw = 1] ≥ 1− σ.

2. For every w that is ε-far from C, we have Pr [T x = 0] ≥ 1− σ.

Note that the algorithm T that an LTC admits is simply an ε-tester for the property of being a
valid codeword of C. Thus, by Claim 4.6, we can directly cast T as a robust local algorithm.

4.3.2 Locally decodable codes

Locally decodable codes (LDCs) [KT00] are codes that admit algorithms for decoding each individual
bit of the message of a moderately corrupted codeword by only making a small number of queries
to it.

Definition 4.9 (Locally Decodable Codes (LDCs)). A code C : {0, 1}k → {0, 1}n is locally decodable
with decoding radius δ and error rate σ if there exists a probabilistic algorithm D that, given index
i ∈ [k], makes q queries to a string w promised to be δ-close to a codeword C(x), and satisfies

Pr[Dw(i) = xi] ≥ 1− σ.

Note that local decoders are significantly different from local testers and testing in general.
Firstly, decoders are given a promise that their input is close to a valid codeword (whereas testers
are promised to either receive a perfectly valid input, or one that is far from being valid). Secondly,
a decoder is given an index as an explicit parameter and is required to perform a different task
(decode a different bit) for each parameter (see Fig. 1a).

Nevertheless, local decoders can also be cast as robust local algorithms. In fact, unlike testers,
they satisfy two-sided robustness (i.e., both 0-inputs and 1-inputs are robust). In the following, note
that since inputs near the boundary of the decoding radius are not robust, we reduce the decoding
radius by a factor of 2.
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Claim 4.10. A local decoder D with decoding radius δ for the code C : {0, 1}k → {0, 1}n is a
(δ/2, δ/2)-robust local algorithm for computing the function f defined as follows.

f(z, w) = xz, if x ∈ {0, 1}k is such that w is δ/2-close to C(x).

Proof. Take any w ∈ {0, 1}n that is δ/2-close to C(x). Then, (w, z) is in the domain of definition of
f for all explicit inputs z ∈ [k]. Now let w′ ∈ Bδ/2(w) and note that w′ is still within the decoding
radius of D. Hence, the decoder D outputs xz with probability 1− σ, as required. Moreover, this
holds regardless whether xz = 0 or xz = 1, and so D is (δ/2, δ/2)-robust.

Remark 4.11 (Robustness vs decoding radius tradeoff). A local decoder has decoding radius δ if and
only if it is δ/2-robust with decoding radius δ/2, and a tradeoff between promise size and robustness
parameter likewise holds in this case: for any δ′ < δ, the decoder D is a (δ − δ′, δ − δ′)-robust
algorithm for the restriction of f to the δ′-neighbourhood of the code C. In particular, D is a
(δ, δ)-robust algorithm with the domain of f defined to be the code C.

4.3.3 Relaxed locally decodable codes

Relaxed locally decodable codes (relaxed LDCs) [BGH+06] are codes that admit a natural relaxation
of the notion of local decoding, in which the decoder is allowed to output a special abort symbol ⊥
on a small fraction of indices, indicating it detected an inconsistency, but never erring with high
probability.

Definition 4.12 (Relaxed LDCs). A code C : {0, 1}k → {0, 1}n whose distance is δC is a q-local
relaxed LDC with success rate ρ, decoding radius δ ∈ (0, δC/2) and error rate σ ∈ (0, 1/3] if there
exists a randomised algorithm D, known as a relaxed decoder, that, on input i ∈ [k], makes at most
q queries to an oracle w and satisfies the following conditions.

1. Completeness: For any i ∈ [k] and w = C(x), where x ∈ {0, 1}k,

Pr[Dw(i) = xi] ≥ 1− σ .

2. Relaxed Decoding: For any i ∈ [k] and w ∈ {0, 1}n that is δ-close to a (unique) codeword C(x),

Pr[Dw(i) ∈ {xi,⊥}] ≥ 1− σ .

3. Success Rate: There exists a constant ξ > 0 such that, for any w ∈ {0, 1}n that is δ-close to a
codeword C(x), there exists a set Iw ⊆ [k] of size at least ξk such that for every i ∈ Iw,

Pr[Dw(i) = xi] ≥ 2/3 .

Note that strictly speaking, the special abort symbol makes it so that relaxed local decoders do
not fully fit Definition 4.1, as the input-output mapping f becomes one-to-many. Nevertheless, a
simple generalisation of local algorithms, which allows an additional abort symbol, enables us to
capture relaxed LDCs as robust local algorithms as well. We show this in Section 7.2.
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4.3.4 Locally correctable codes

The notion of locally correctable codes (LCCs) is closely related to that of LDCs, except that rather
than admitting an algorithm that can decode any individual message bit, LCCs admit an algorithm
that can correct any corrupted codeword bit of a moderately corrupted codeword.

Definition 4.13 (Locally Correctable Codes (LCCs)). A code C : {0, 1}k → {0, 1}n is locally
correctable with correcting radius δ and error rate σ if there exists a probabilistic algorithm D that,
given index j ∈ [n], makes q queries to a string w promised to be δ-close to a codeword C(x) and
satisfies

Pr[Dw(j) = C(x)j ] ≥ 1− σ.

A straightforward adaptation of Claim 4.10 yields the following claim.

Claim 4.14. A local corrector D with correcting radius δ for the code C : {0, 1}k → {0, 1}n is a
(δ/2, δ/2)-robust local algorithm for computing the function f defined as follows.

f(z, w) = C(x)z, if x ∈ {0, 1}k is such that w is δ/2-close to C(x).

4.3.5 Universal locally testable codes

Universal locally testable codes (universal LTCs) [GG18] are codes that admit local tests for
membership in numerous possible subcodes, allowing for testing properties of the encoded message.

Definition 4.15 (Universal LTCs). A universal LTC C : {0, 1}k → {0, 1}n for a family of functions
F =

{
fi : {0, 1}k → {0, 1}

}
i∈[M ]

is a code such that for every i ∈ [M ] the subcode {C(x) : fi(x) = 1}
is locally testable.

Note that ULTCs trivially generalise LTCs, as well as generalise relaxed LDCs (see details in
[GG18, Appendix A]). Since universal testers can be viewed as algorithms that receive an explicit
parameter i ∈ [M ] and invoke an ε-tester for the property {C(x) : fi(x) = 1}, then by applying
Claim 4.6 to each value of the parameter i they can be cast as robust local algorithms.

4.4 PCPs of proximity

PCPs of proximity (PCPPs) [BGH+06] are probabilistically checkable proofs wherein the verifier is
given query access not only to the proof, but also to the input. The PCPP verifier is then required
to probabilistically check whether the statement is correct by only making a constant number of
queries to both input and proof.

Definition 4.16. A PCP of proximity (PCPP) for a language L with proximity parameter ε, error
rate σ and query complexity q, consists of a probabilistic algorithm V , called the verifier, that receives
query access to both an input x ∈ Σn and a proof π ∈ {0, 1}m. The verifier V is allowed to make q
queries to (x, π) and satisfies the following:

1. for every x ∈ L there exists a proof π such that Pr
[
V (x,π) = 1

]
≥ 1− σ; and

2. for every x that is ε-far from L and every proof π, it holds that Pr
[
V (x,π) = 0

]
≥ 1− σ.
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We observe that PCPs of proximity with canonical proofs [GS06] (i.e., such that the verifier
rejects statement-proof pairs that are far from being the concatenation of a valid statement with a
valid proof for it) admit verifiers that are robust local algorithms. Using the tools of [DGG19], who
show that PCPPs can be endowed with the canonicity property at the cost of polynomial blowup in
proof length, we can obtain robust local algorithms for general PCPPs.

Claim 4.17. A PCPP for a language L ⊆ Σn with proximity parameter ε > 0, error rate σ and
query complexity q can be transformed into a PCPP for L with proximity parameter 2ε, whose
verifier is an (ε, 0)-robust local algorithm with the same query complexity and error rate.

Sketch of proof. Let V be a PCPP verifier with proximity parameter ε and error rate σ for L ⊆ Σn,
that makes at most q queries to its input-proof pair (x, π) ∈ Σn × {0, 1}m. By [DGG19, Section 3],
there exists a PCPP verifier V ′ for L with poly(m) proof length (as well as proximity parameter ε,
error rate σ and query complexity q) that satisfies the following strengthening of the conditions in
Definition 4.16: there is a set of canonical proofs {πx}x∈L such that

1. for every x ∈ L, it holds that Pr
[
V (x,πx) = 1

]
≥ 1− σ; and

2. for every (x, π) that is ε-far from (y, πy) for all y ∈ L, it holds that Pr
[
V (x,π) = 0

]
≥ 1− σ.

In other words, V ′ is an ε-tester for the property Π := {(x, πx) : x ∈ L}, and we invoke Claim 4.6.

Non-interactive proofs of proximity. MA proofs of proximity (MAPs) [GR18, FGL14] are
proof systems that can be viewed as a property testing analogue of NP proofs. The setting of
MAPs is very similar to that of PCPPs, with the distinction that the purported proof is of sublinear
size and is given explicitly, i.e., the MAP verifier can read the entire proof. We remark that an
equivalent description of a MAP as a covering by partial testers [FGL14] is used in this work, so
that every fixed proof string defines a tester, and Claim 4.6 applies. We cover this in Section 7.3.

5 Technical lemmas

In the section we provide an arsenal of technical tools for analysing robust local algorithms, which
we will then use to prove our main result in Section 6. The order in which we present the tools is
according to their importance, starting with the most central lemmas.

Specifically, in Section 5.1 we discuss the notion of relaxed sunflowers that we shall need, called
daisies, then state and prove a daisy partition lemma for multi-collections of sets. In Section 5.2, we
apply the Hajnal-Szemerédi theorem to derive a sampling lemma for daisies. In Section 5.3, we
prove a simple yet vital volume lemma for robust local algorithms, which will be used throughout
our analysis. Finally, in Section 5.4 we adapt generic transformations (amplification and randomness
reduction) to our setting of robust local algorithms.

5.1 Relaxed sunflowers

We discuss the central technical tool used in the transformation to sample-based algorithms, which
is a relaxation of combinatorial sunflowers, referred to as daisies [FLV15, GL21]. We extend the
definition of daisies to multi-sets, then state and prove the particular variant of a daisy lemma that
we shall need.
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Definition 5.1 (Daisy). Suppose S is a multi-collection of subsets of [n] (i.e., subsets may repeat).
S is an h-daisy (where h : N → N) with petals of size j and kernel K ⊆ [n] if the following holds:
every S ∈ S has a petal S \ K with |S \K| = j and, for every k ∈ [j], there exists a subset
Pk ⊆ S \K with |Pk| ≥ k whose elements are contained in at most h(k) sets from S.
A daisy with pairwise disjoint petals (1-daisy) is referred to as a simple daisy.

We remark that the notion of a daisy relaxes the standard definition of a sunflower in two
ways: (1) the kernel is not required to equal the pairwise intersection of all sets in the collection, its
structure is unconstrained; and (2) the petals P = {S \K : S ∈ D} need not be pairwise disjoint,
but rather, each point outside of the kernel can be contained in at most h(j) sets of D; see Fig. 2b.
Note that Definition 5.1, in contrast to sunflowers (for which pairwise disjointness disallows multiple
copies of a same set), applies to multi-sets.

These relaxations, unlike in the case of sunflowers, allow us to arbitrarily partition any collection
of subsets into a collection of daisies with strong structural properties, as Lemma 5.2 shows.

Lemma 5.2 (Daisy partition lemma for multi-collections). Let S be a multi-collection of q-sets of
[n], and define the function h : N → N as follows:

h(k) = n
max{1,k−1}

q .

Then, there exists a collection {Dj : 0 ≤ j ≤ q} such that

1. {Dj} is a partition of S, i.e.,
⋃q

j=0Dj = S and Dj ∩ Dk = ∅ when j ̸= k.

2. For every 0 ≤ j ≤ q, there exists a set Kj ⊆ [n] of size |Kj | ≤ q|S| · n−max{1,j}/q such that Dj

is an h-daisy with kernel Kj and petals of size j. Moreover, the kernels form an incidence
chain ∅ = Kq ⊆ Kq−1 ⊆ · · · ⊆ K1 = K0.

Proof. We construct the collections {Dj : 0 ≤ j ≤ q} in a greedy iterative manner, as follows.

1. Define S0 := S.

2. Inductively define, for each 0 ≤ j ≤ q − 1:

(a) Kernel construction: Define Kj as the set of points in [n] that are contained in at least
h(j + 1) sets from S.

(b) Daisy construction: Set Dj to be all the sets S ∈ Sj such that |S \Kj | = j.

(c) Set Sj+1 to be Sj \ Dj .

3. Finally, set Dq = Sq and Kq = ∅.

We now prove that this construction yields daisies with the required properties. For ease
of notation, let di be the number of sets in S containing i for each i ∈ [n]. By definition,
Sq ⊆ Sq−1 ⊆ · · · ⊆ S0 and Dj ⊆ Sj for all j. Since Dj−1 ∩ Sj = ∅ for all j ∈ [q], it follows that
Dj ∩ Dk = ∅ when j ̸= k. Also, since S = Sq ∪

⋃
0≤j<q Dj and Sq = Dq, we have S =

⋃
0≤j≤q Dj .

Since S is comprised of q-sets, ∑
i∈[n]

di = q|S|.
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By the kernel construction, for each j ∈ {0, 1, . . . , q}, Kj is the set of all i ∈ [n] such that di ≥ h(j+1),
which implies

∑
i∈Kj

di ≥ |Kj | · h(j + 1). Therefore,

q|S| =
∑
i∈[n]

di ≥
∑
i∈Kj

di ≥ |Kj | · h(j + 1)

and thus |Kj | ≤ q|S|/h(j + 1) = q|S| · n−max{1,j}/q. Note, also, that the kernel construction ensures
not only Kj ⊆ Kj−1 when j ∈ [q], but also K0 = K1 because h(1) = h(2).

Since the petals of each S ∈ Dj have size exactly j by construction, all that remains to be proven
is the intersection condition on the petals that makes Dj an h-daisy; namely, that for every k ∈ [j],
there exists a subset Pk ⊆ S \K with |Pk| ≥ k whose elements are contained in at most h(k) sets
from Dj . Assume for the sake of contradiction that this condition does not hold.

Let j ∈ [q] be the smallest value for which Dj is not an h-daisy and S ∈ Dj be a set that violates
the intersection condition; then take k ≤ j to be the smallest subset size such that every Pk ⊆ S \Kj

with size k has an element i ∈ Pk with di > h(k) (equivalently said, j and k are minimal such that
the subset L ⊂ S \Kj , comprised of all i with di ≤ h(k), has size at most k − 1).

Suppose first that k = 1. Then, every i ∈ S \ Kj is such that di > h(2) = h(1) and thus
S \Kj ⊆ K0. But this implies S ∈ D0 (since |S \K0| = 0), a contradiction because the intersection
condition holds by vacuity on empty petals.

Suppose now that k > 1. The subset

L := {i ∈ S \Kj : di ≤ h(k)}

contains at most k − 1 points; however, by minimality of k, at least k − 1 distinct points i ∈ L
satisfy di ≤ h(k − 1) ≤ h(k). Therefore, |L| = k − 1 and

L = {i ∈ S \Kj : di ≤ h(k − 1)} .

By the definition of L, every i ∈ S \ (Kj ∪ L) satisfies di > h(k), so that i ∈ Kk−1; therefore,
S ⊆ Kk−1 ∪Kj ∪ L. Since the kernels form an incidence chain, Kj ⊆ Kk−1 and thus S \Kk−1 = L.
But then |S \Kk−1| = |L| = k − 1, so that S ∈ Dk−1, contradicting the fact that S ∈ Dj (because
k − 1 < j and {Dj} is a partition).

The following claim shows an upper bound on the total number of sets in an h-daisy that may
intersect a given petal. It will be useful in order to partition a daisy into simple daisies, as the next
section will show.

Claim 5.3. Let S be a multi-collection of q-sets and {Dj : 0 ≤ j ≤ q} be a daisy partition obtained
by an application of Lemma 5.2. Then, for every j ∈ [q] and S ∈ Dj, the number of sets in Dj

whose petals intersect S \Kj (including S itself) is at most 2h(j) = 2nmax{1,j−1}/q.

Proof. Let S be an arbitrary set in Dj . We name the elements in S \ Kj by u1, u2, . . . , uj (by
Lemma 5.2, every S ∈ Dj satisfies |S \Kj | = j). For every k ∈ [j], let dk be the number of sets of
Dj that uk is a member of.

Assume without loss of generality that dk ≤ dℓ for every k and ℓ in [j] such that k < ℓ, as
otherwise we can rename u1, u2, . . . , uj so that this holds.
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By the definition of an h-daisy, for every ℓ ∈ [j], there exists a set of ℓ elements k ∈ [j] that
satisfy dk ≤ h(ℓ). Thus, [ℓ] is such a set and we know that dℓ ≤ h(ℓ). As the number of petals that
intersect S \Kj is at most

∑j
k=1 dk, we get that

j∑
k=1

dk ≤
j∑

k=1

h(k) =

j∑
k=1

n
max{1,k−1}

q ≤ 2h(j).

The last equality follows directly from the value of h(k).

5.2 Sampling daisies and the Hajnal-Szemerédi theorem

Concentration of measure is an essential ingredient in our proofs, which we first illustrate via a
simplified example. Consider a collection of singletons that comprise the petals of a combinatorial
sunflower: sets P1, . . . Pk, all disjoint and of size 1, contained in the ground set [n]. If we perform
binomial sampling of the ground set (sampling each i ∈ [n] independently with probability p), the
Chernoff bound ensures that the number of sampled petals is close to its expectation. Defining Xi

as the random variable that indicates whether Pi was sampled, we have lower and upper tail bounds
that guarantee the number of queried petals is concentrated around pn except with exponentially
small probability. Note, too, that the same holds for larger petals: if Pi is a j-set for all i, the
number of queried petals is concentrated around pjn.

Now consider the case where P1, . . . , Pk are petals of a daisy. In this case the Chernoff bound
does not apply, since the indicator random variables Xi are no longer independent; however, the
structure of a daisy ensures there is not too much intersection among these petals, which gives
means to control the correlation between these random variables. It is thus reasonable to expect
that sampling a daisy is similar to sampling a sunflower. This intuition is formalised by making use
of the Hajnal-Szemerédi theorem [HS70], which we state next.

Theorem 5.4. Let G be a graph with m vertices and maximum degree ∆. Then, for any k ≥ ∆+1,
there exists a k-colouring of the vertices of G such that every colour class has size either ⌊m/k⌋ or
⌈m/k⌉.

We remind that integrality does not cause issues in our analyses, and we thus assume all colour
classes have size n/k. By encoding the sets of a daisy as the vertices of an “intersection graph”, the
fact that petals have bounded intersection translates into a graph with bounded maximum degree.
Applying the Hajnal-Szemerédi theorem to this graph, we are able to partition the original daisy
into a small number of large simple daisies.

Lemma 5.5. A daisy D with kernel K, such that each one of its petals has a non-empty intersection
with at most t− 1 other petals, can be partitioned into t simple daisies with the same kernel, each of
size |D|/t.

Proof. Construct a graph G with vertex set D by placing an edge between vertices S and S′ when
(S ∩ S′) \K ̸= ∅. By definition, the maximum degree of G is ∆(G) ≤ t− 1. The Hajnal-Szemerédi
theorem implies G is colourable with t colours, where each colour class has size |G|/t. This partition
of the vertex set corresponds to a partition of the daisy D into simple daisies {Sj : j ∈ [t]}, each of
size |D|/t.
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5.3 The volume lemma

This section proves a key lemma that makes use of daisies to prove a certain structure on the sets
that a robust local algorithm may query. Loosely speaking, the volume lemma ensures that in order
for a collection of sets to be queried with high enough probability, it must cover a sufficiently large
fraction of the input’s coordinates.

Let M be a q-local algorithm that computes a partial function f with error rate σ (we assume
the explicit input to be fixed and omit it). Recall that, for each input x ∈ Σn, the algorithm M
queries according to a distribution µx over a multi-collection of q-sets, as defined in Definition 3.2.

Lemma 5.6 (Volume lemma). Fix x ∈ Σn in the domain of f . If there exists a ρ-robust y ∈ Σn

such that f(y) ̸= f(x), then every collection S ⊆ supp(µx) such that |∪S| = |∪S∈SS| < ρn satisfies
µx(S) ≤ 2σ.

Proof. Suppose, by way of contradiction, that there exists S ⊆ supp(µx) such that µx(S) > 2σ and
|∪S| < ρn.

For notational simplicity, assume without loss of generality that f(x) = 1, and take a ρ-robust
y ∈ Σn such that f(y) = 0. Define w to match x in the coordinates covered by ∪S, and to match y
otherwise. Then w is ρ-close to y, so that M outputs 0 when its input is w with probability at least
1− σ.

When the algorithm samples a decision tree that makes it query S ∈ S, then M behaves exactly
as it would on input x, which happens with probability at least µx(S) > 2σ. But the algorithm
outputs 1 on input x with probability at most σ, and thus outputs 0 on input w with probability
greater than σ, in contradiction with the robustness of y.

Remark 5.7. The volume lemma requires an arbitrary ρ-robust y with f(y) ̸= f(x). It thus
suffices that a single such ρ-robust point exists for the volume lemma to hold for every x′ such that
f(x′) = f(x).

5.4 Generic transformations

This section provides two standard transformations that improve parameters of an algorithm: error
reduction (Claim 5.8) and randomness reduction (Claim 5.9), which, applied in conjunction, imply
Lemma 5.10. These apply generally to randomised algorithms for decision problems, and, when
applied to robust local algorithms, both transformations compute the same function and preserve
robustness. We defer the proofs in this section to Appendix A.

The following claim is an adaptation of a basic fact regarding randomised algorithms: performing
independent runs and selecting the output via a majority rule decreases the error probability
exponentially.

Claim 5.8 (Error reduction). Let M be a (ρ0, ρ1)-robust algorithm for f : P → {0, 1} (where
P ⊂ Z × Σn) with error rate σ ≤ 1/3, query complexity q and randomness complexity r.

For any σ′ > 0, there exists a (ρ0, ρ1)-robust algorithm N for computing the same function with
error rate σ′, query complexity O(q log(1/σ′)/σ) and randomness complexity O(r log(1/σ′)/σ).

Next, we state a transformation that yields an algorithm with twice the error rate and significantly
reduced randomness complexity. This, in turn, provides an upper bound on the number of q-sets
queried by the algorithm, such that an application of Lemma 5.2 to this multi-collection yields daisies
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with kernels of sublinear size. Such a bound on the size of the kernels is crucial to ensure correctness
of the sample-based algorithm we construct in Section 6.1. Our proof adapts the technique of
Goldreich and Sheffet [GS10], which in turn builds on the work of Newman [New91].

Claim 5.9 (Randomness reduction). Let M be a (ρ0, ρ1)-robust algorithm for f : P → {0, 1} (where
P ⊂ Z × Σn) with error rate σ, query complexity q and randomness complexity r.

There exists a (ρ0, ρ1)-robust algorithm N for computing the same function with error rate
2σ and query complexity q, whose distribution µ̃N has support size 3n ln |Σ|/σ. In particular, the
randomness complexity of N is bounded by log(n/σ) + log log |Σ|+ 2.

In the next section, we need a combination of error reduction and randomness reduction, which
the following lemma provides.

Lemma 5.10. Assume there exists a ρ-robust algorithm M for computing f with query complexity ℓ,
error rate 1/3 and arbitrary randomness complexity. Then there exists a ρ-robust q-local algorithm
M ′ for f with error rate

σ =
1

4q

such that q
log 8q = O(ℓ), or, equivalently,

q = O(ℓ log ℓ).

Moreover, the distribution of M ′ is uniform over a multi-collection of decision trees of size 6n ln |Σ|/σ.

6 Proof of Theorem 1

This section contains the main technical contribution of our work: a proof that every robust local
algorithm with query complexity q can be transformed into a sample-based local algorithm with
sample complexity n1−1/O(q2 log2 q). We begin by providing a precise statement of Theorem 1. In the
following, we remind that when the error rate of an algorithm is not stated, it is assumed to be 1/3.

Theorem 6.1 (Theorem 1, restated). Suppose there exists a (ρ0, ρ1)-robust local algorithm M for
the function f : P → {0, 1} (where P ⊂ Z × Σn) with query complexity ℓ and max {ρ0, ρ1} = Ω(1).
Then, there exists a sample-based algorithm N for f with sample complexity γ · n1−1/2q2, where
q = O(ℓ log ℓ) and γ = O(|Σ|q ln |Σ|).

Note that when q = Ω(
√
log n) or |Σ|q = Ω

(
n1/2q2

)
, the algorithm we obtain samples linearly

many coordinates, and the statement becomes trivial. Therefore, hereafter we assume that the query
complexity of M satisfies ℓ ≤ 5

√
log n (so q = Θ( 5

√
log n log logn) = o(

√
log n)) and the alphabet size

satisfies |Σ| ≤ 2
6√logn (so |Σ|q ≤ n1/q3).

We proceed to prove Theorem 6.1. Specifically, in Section 6.1 we construct a sample-based
local algorithm N from the (ρ0, ρ1)-robust local algorithm M in the hypothesis of Theorem 6.1; in
Section 6.2, we analyse our sample-based algorithm N ; and in Section 6.5 we conclude the proof by
showing the lemmas proved throughout the analysis indeed imply correctness of N .
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6.1 Construction

Hereafter, let f : P → {0, 1} be the function in the hypothesis of Theorem 6.1. As the following
treatment is the same for all explicit inputs z ∈ Z, we assume it to be fixed and omit it from the
notation. We also assume without loss of generality that ρ0 is a constant strictly greater than 0 (if
this is not the case we simply exchange the 0 and 1 values in the truth table of f). We set ρ = ρ0.

Let M be the algorithm in the hypothesis of Theorem 6.1. We apply Lemma 5.10 and obtain
a (ρ0, ρ1)-robust local algorithm M ′ for the same problem, with query complexity q = O(ℓ log ℓ)
and error rate σ = 1/4q. The algorithm N we describe below has white box access to the local
algorithm M ′. We next explain how it extracts information from it.

Upon execution, M ′ chooses a decision tree uniformly at random according to the outcome of
its coin flips; this uniform distribution is denoted µ̃ = µ̃M ′

, whose support size is |µ̃|. For every
decision tree and every one of its branches, define a description tuple (S, aS , b, s), where s is the
random string that will cause the use of this tree, S is the set of all the queries in this branch, aS is
the assignment to these queries that will result in M ′ using this specific branch and b is the value
M ′ returns when this occurs (as per Definition 3.2).

We assume that for every description-tuple (S, aS , b, s) the size of S is exactly q. This can be
assumed without loss of generality since it is possible to convert M ′ into an algorithm such that
every decision tree and every one of its branches makes q distinct queries: if the same query appears
more than once on a branch of a tree, all but the first appearance can be removed by choosing
the continuation that follows the (already known) value that leads to the algorithm using this
branch. In addition, a tree can be expanded by adding queries, so that every branch has exactly
q distinct queries. Both of these changes do not change any of the parameters of the algorithm
beyond ensuring that it will query exactly q coordinates.

The algorithm N we describe next only makes use of description tuples (S, aS , b, s) such that
b = 1. To this end we set

T = {(S, aS , b, s) : (S, aS , b, s) is a description tuple such that b = 1}.

Algorithm N also requires the multi-collection S defined as follows:

S = {S : (S, aS , b, s) ∈ T }.

Specifically, it applies Lemma 5.2 to get a daisy partition of S. When the algorithm extracts T
and S from M ′ and computes a daisy partition for S, it preserves the information that allows it to
associate the set of a tuple of (S, aS , b, s) to the unique daisy S is contained in.

The construction proceeds in two stages: preprocessing and execution. Recall that, for any input
x ∈ Σn and assignment κ to a subset S ⊆ [n], we denote by xκ the word that assigns the same
values as κ on S and the same values as x on [n] \ S.

Preprocessing. N has access to M ′, with which it computes T and S. Applying Lemma 5.2 to
S, the algorithm obtains the daisy partition

D = {Dj : 0 ≤ j ≤ q} ,

so that each tuple in T is associated with Dj for exactly one j ∈ {0, . . . , q}. Set

p := γ · n−1/2q2 ,
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the sampling probability, where γ = 24|Σ|q ln |Σ|; and, for every j ∈ [q], set

τj :=
|µ̃|
2q

· pj ,

the thresholds, which will be used in the execution stage.

Execution. When N receives query access to a string x ∈ Σn, it performs the following sequence
of steps.

1. Sampling: Select each element in [n] independently with probability p. Denote by Q the set of
all coordinates thus obtained. If |Q| ≥ 2pn, then N outputs arbitrarily. Otherwise, N queries
all the coordinates in Q.

2. Enumeration: For every j ∈ [q] and kernel assignment κ to Kj ,
23 perform the following steps.

Set a counting variable v to 0 before each iteration.

(a) Local view generation and vote counting: For every tuple (S, aS , 1, s) ∈ T such that
S ∈ Dj , increment v if S ⊂ Q ∪Kj and aS assigns on S the same values as xκ does.

In the case j = 1, if 12 ln |Σ|/(ρ · σ) sets have the same point outside K1, disregard them
in the count.24

(b) Threshold check: If v ≥ τj , output 1.

3. If the condition v ≥ τj was never satisfied, then output 0.

We proceed to analyse this construction.

6.2 Analysis

We remind that the explicit input z is assumed to be fixed and is omitted from the notation. For
the analysis we are interested in the behaviour of the algorithm M ′ on a fixed input x. For this
purpose, we use the distribution µx from Definition 3.2.

For x ∈ Σn we define µx to be the uniform distribution over the multi-collection of sets{
S : (S, aS , b, s) is a description tuple such that aS = x|S

}
, (6.1)

where a description tuple is as appears in Section 6.1. We note that this implies that supp(µx) has
exactly one set for each decision tree M ′ may use, since when both the randomness and the input
are fixed exactly one branch of the decision tree is used by M ′. Therefore,

|µx| = |µ̃| .

We now list the relevant parameters in the analysis with reference to where they are obtained.
By Lemma 5.10,

σ =
1

4q
, (6.2)

23Note that the algorithm does not iterate over the case j = 0. We will show in Section 6.2 that this has a negligible
effect.

24This is required for technical purposes when dealing with K1.
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and, for every x ∈ Σn,

|µx| = |µ̃| = 6n ln |Σ|
σ

. (6.3)

The construction of N in the previous section sets the parameters

γ = 24|Σ|q ln |Σ| , (6.4)

p = γ · n−1/2q2 , (6.5)

and, for all j ∈ [q],

τj =
|µ̃|
2q

· pj = |µx|
2q

· pj . (6.6)

(The second equality holds for all x ∈ Σn by Eq. (6.3).) Finally, the size of the collection of tuples T ,
which by the construction in Section 5.4 is the same as that of S, is bounded by the total number
of branches over all decision trees in supp(µ̃). Thus,

|S| = |T | ≤ |Σ|q · |µ̃| = |Σ|q · |µx| , (6.7)

for every x ∈ Σn.
For our result we need an upper bound on the sizes of the kernels that algorithm N enumerates

over, which we show next.

Claim 6.2. Let {Ki : 0 ≤ i ≤ q} be the kernels of the daisy partition {Di} of S used by the algorithm
N . For every i ∈ {0, 1, . . . , q}, the kernel Ki is such that |Ki| ≤ γ · q2 · n1−max{1,i}/q and, for n
sufficiently large, |Ki| < ρn/2.

Proof. By Lemma 5.2, for every i ∈ {0, 1, . . . , q},

|Ki| ≤ q|S|n−max{1,i}/q

≤ q|Σ|q|µx| · n−max{1,i}/q (by Eq. (6.7), |S| ≤ |Σ|q · |µx|)

≤ q|Σ|q · 6n ln |Σ|
σ

· n−max{1,i}/q
(
by Eq. (6.3), |µx| ≤

6n ln |Σ|
σ

)
= 24|Σ|q · ln |Σ| · q2 · n−max{1,i}/q

(
by Eq. (6.2), σ =

1

4q

)
= γ · q2 · n1−max{1,i}/q (by Eq. (6.4), γ = 24|Σ|q ln |Σ|)

It remains to prove the second part of the claim. By the calculation above, since ρ is constant and
|Σ|q ln |Σ| · q2 = o(n−1/q) (recall that |Σ| ≤ n1/q4 and q is sub-logarithmic), for sufficiently large n,

|K0| ≤ γ · q2 · n1−1/q =
(
24|Σ|q ln |Σ| · q2 · n−1/q

)
n ≤ ρn/2. (6.8)

By Lemma 5.2, Kq ⊆ Kq−1, . . . ,K1 = K0, and hence the claim follows.

Next, we provide a number of definitions emanating from algorithm N . We define, for every
x ∈ Σn, the multi-collection

Ox :=
{
S : (S, aS , 1, s) ∈ T and x|S = aS

}
,
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where T is defined as in Section 6.1. Note that the definition of this collection depends only on
the algorithm M and not on the function f it computes. Hence, it is well-defined for every x, and
in particular for points that are ρ-close to a ρ-robust point of the domain (where f may not be
defined). We note that, since µx is defined over the collection in Eq. (6.1) we know that

Ox ⊆ supp(µx) . (6.9)

Since the “capping parameter” 12 ln |Σ|/(ρ · σ) is used numerous times, we set

α =
12 ln |Σ|
ρ · σ

. (6.10)

We refer to the act of incrementing v as counting a vote. For each j ∈ [q], we define the vote
counting function vj : Σ

n → N to be a random variable (determined by Q) as follows. If j > 1,

vj(x) := |{S ∈ Ox ∩ Dj : S ⊆ Q ∪Kj}| ,

and v1(x) is defined likewise, with the exception that, when more than α sets intersect in a point
outside K1, they are discarded.

Claim 6.3. Let x ∈ Σn, j ∈ [q] and κ an assignment to Kj. Then vj(xκ) is equal (as a function of
Q) to the maximum value of the counter v computed by N on input x with kernel Kj and the kernel
assignment κ to Kj.

Proof. Fix x ∈ Σn. Recall that when algorithm N computes v for a j ∈ {2, 3, . . . , q} and a kernel
assignment κ to Kj in Step 2a, it only increases v if it encounters a tuple (S, aS , 1, s) where S ∈ Dj ,
S ⊂ Q ∪Kj and aS assigns on S the same values as xκ does. Thus, by the definition of Ox, the
algorithm N counts exactly all the tuples (S, aS , 1, s) such that S ∈ Ox and S ⊂ Q ∪Kj . These
are precisely the sets that comprise the collection whose cardinality is vj(xκ). Note that the same
holds when j = 1 due to the additional condition in Step 2a and the corresponding restriction in
the definition of v1(xκ).

We now proceed to the main claims. The algorithm N only counts votes for output 1, i.e. tuples
with 1 as their third value, and hence it suffices to prove that: (1) when f(x) = 1 and the kernel
assignment is κ = x|Kj

(the value of x on the indices in Kj) for some daisy Dj , the number of votes
is high enough to cross the threshold τj ; and that (2) when f(x) = 0, then every kernel assignment
κ is such that the number of votes is smaller than the threshold. These conditions are shown to hold
with high probability in Sections 6.3 and 6.4, respectively, and we show how the theorem follows
from them in Section 6.5.

6.3 Correctness on non-robust inputs

Claim 6.4. Let Q be the coordinates sampled by N and fix x ∈ Σn such that f(x) = 1. There
exists j ∈ [q] such that, with the kernel assignment κ = x|Kj

, the vote counting function satisfies
vj(xκ) = vj(x) ≥ τj with probability at least 9/10.

Proof. For ease of notation, let us fix x as in the statement and denote O := Ox = Oxκ . When
j > 1, define the subcollection of O in Dj by Oj := Ox ∩Dj ; when j = 1, define O1 := (Ox ∩Dj) \ C,
where C ⊆ Ox ∩ D1 contains every S ∈ Ox ∩ D1 for which there exist at least α − 1 other sets in
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S′ ∈ Ox ∩ D1 that have the same petal as S, i.e., such that S \K1 = S′ \K1. We also take n to be
sufficiently large when necessary for an inequality to hold.

For the claim to hold we require the existence of j ∈ [q] such that Oj is a sufficiently large
portion of O. Since

⋃
0<j≤q Oj = O \ (O0 ∪ C), in order to achieve this goal, we only need to bound

the sizes of both O0 and C. As a first step, we bound µx(O0) and µx(C), which give us a lower

bound on µx

(⋃
0<j≤q Oj

)
, which we then use in order to lower bound

∣∣∣⋃0<j≤q Oj

∣∣∣.
We start with µx(O0). All the sets in D0 are subsets of K0, and |K0| < ρn/2 by Claim 6.2.

This implies that the cardinality of ∪O0 (the union of all sets in O0) is strictly less than ρn,
and consequently, by the volume lemma (Lemma 5.6, which applies because f(x) = 1), we have
µx(O0) ≤ 2σ.

We now proceed to bound µx(C). As C ⊆ D1, every set in C has exactly one element in [n] \K1

and repeats at least α times, the cardinality of ∪C is at most |K1|+ |C|
α . By Claim 6.2, |K1| < ρn/2,

and it follows that

|K1|+
|C|
α

<
ρn

2
+

|O|
α

≤ ρn

2
+

|µx|
α

(by Eq. (6.9), O = Ox ⊆ supp(µx))

≤ ρn

2
+ |µx| ·

ρ · σ
12 ln |Σ|

(
by Eq. (6.10), α−1 =

ρ · σ
12 ln |Σ|

)
=

ρn

2
+

6n ln |Σ|
σ

· ρ · σ
12 ln |Σ|

(
by Eq. (6.3), |µx| =

6n ln |Σ|
σ

)
≤ ρn .

Consequently, by Lemma 5.6, µx(C) ≤ 2σ.
By the definition of error rate, µx(O) ≥ 1−σ. Since {Oj : 0 ≤ j ≤ q} is a partition of O (because

{Dj} is a partition),

µx

 ⋃
0<j≤q

Oj

 = µx(O)− µx(O0)− µx(C) ≥ 1− 5σ .

As µx is uniform, each element of the multi-collection O has weight exactly 1/|µx|. Therefore,
q∑

j=1

|Oj | = |µx| · µx(∪j∈[q]Oj) ≥ |µx|(1− 5σ) ≥ |µx|/2 ,

where the last inequality follows from the assumption that 5σ ≤ 1/2 (which follows, e.g., from q ≥ 3,
which Lemma 5.10 ensures). Let j be such that

|Oj | ≥
|µx|
2q

; (6.11)

by averaging, such a j indeed exists. Our goal now is to show that with probability at least 9/10,
there are at least τj sets S ∈ Oj whose petal is in Q, i.e., such that S \Kj ⊆ Q.

Instead of proving this directly on Oj , we do so on collections that form a partition of Oj and
have a useful structure. The sets in Oj are also in Dj , so that Oj is also a daisy with kernel Kj .
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By Claim 5.3, for every set S ∈ Oj , there exist at most 2nmax{1,j−1}/q − 1 sets S′ ∈ Oj \ {S} whose
petals have a non-empty intersection with the petal of S, i.e, such that (S ∩ S′) \Kj ̸= ∅. This
enables us to apply Lemma 5.5 to Oj , partitioning it into {Si : i ∈ [t]} simple daisies of equal sizes,
where

t ≤ 2nmax{1,j−1}/q . (6.12)

Thus, for every i ∈ [t],

|Si| =
|Oj |
t

. (6.13)

Let O′
j be the multi-collection of all sets S ∈ Oj such that S \Kj ⊆ Q. In the same manner, for

every i ∈ [t], let S ′
i be the multi-collection of all sets S ∈ Si such that S \Kj ⊆ Q.

By construction, the collections {S ′
i} are pairwise disjoint. Also, by the definition of vj , we have

vj(x) =
∣∣∣O′

j

∣∣∣ =∑t
i=1 |S ′

i|. Therefore, the event that vj(x) ≤ τj can only occur if there exists i ∈ [t]

such that |S ′
i| ≤ τj/t.

Consequently, we obtain

Pr [vj(x) ≤ τj ] ≤ Pr
[∣∣S ′

i

∣∣ ≤ τj
t

for some i ∈ [t]
]

≤
t∑

i=1

Pr
[∣∣S ′

i

∣∣ ≤ τj
t

]
(union bound)

≤ tPr
[∣∣S ′

1

∣∣ ≤ τj
t

]
. (all Si have equal size)

We show afterwards that the probability of the event |S ′
1| ≤

τj
t is strictly less than 1/10t, which

by the inequality above implies the claim.
We later use the Chernoff bound with S1, and hence we start by bounding E[|S ′

1|] from below.
Recall that the petal of every set S ∈ S1 ⊆ Dj has size j (i.e., |S \Kj | = j), and therefore is in S ′

1

with probability exactly pj . So

E[
∣∣S ′

1

∣∣] = |S1|pj =
|Oj |pj

t
(by Eq. (6.13), |S1| = |Oj |/t)

≥ |µx|pj

2tq

(
by Eq. (6.11), |Oj | ≥

|µx|
2q

)
(6.14)

=
τj
t
.

(
by Eq. (6.6), τj =

|µx|
2q

· pj
)

Thus,

Pr

[∣∣S ′
1

∣∣ ≤ 1

2
E[
∣∣S ′

1

∣∣]] ≥ Pr
[∣∣S ′

1

∣∣ ≤ τj
t

]
.

Next we show that the probability of the event |S ′
1| ≤ 1

2E[|S
′
1| is at most 1/10t, which concludes the

proof. Since S1 is a simple daisy, the petals of sets in S1 are pairwise disjoint and hence the events
S \Kj ⊂ Q, for every S ∈ S1, are all independent. This enables us to use the Chernoff bound to

37



get that

Pr

[∣∣S ′
1

∣∣ ≤ 1

2
E[
∣∣S ′

1

∣∣]]
≤ exp

(
−E[|S ′

1|]
8

)
(Chernoff bound)

≤ exp

(
−|µx|pj

16tq

)
(by Eq. (6.14))

≤ exp

(
−6n ln |Σ|

σ
· pjn

16tq

) (
by Eq. (6.3), |µx| =

6n ln |Σ|
σ

)
≤ exp

(
−4q · 3 ln |Σ|p

jn

8tq

) (
by Eq. (6.2), σ−1 = 4q

)
≤ exp

(
−3 ln |Σ|pj

4
· n1−max{1,j−1}

q

) (
by Eq. (6.12), t ≤ 2n

max{1,j−1}
q

)
≤ 1

10t
exp

(
−γj · 3 ln |Σ|

4
· n1−max{1,j−1}

q
− j

2q2 + ln(20t)

) (
p = γ · n−1/2q2

)
≤ 1

10t
exp

(
−γ · 3 ln |Σ|

4
· n

1
q
− 1

2q + ln(10t)

)
(1 ≤ j ≤ q)

≤ 1

10t
,

where the last inequality follows for n sufficiently large because ln t ≤ max{1,j−1}
q lnn+ 1 = o(n1/2q)

and γ · ln |Σ| = Ω(1).

Note that, although a success probability of 9/10 suffices to ensure correctness of a single run of
N , Claim 6.4 yields a much stronger result: the failure probability is exponentially small. This is
because Claim 6.4 does not enumerate over kernel assignments. Moreover, the analysis for the case
j = 1 can be improved significantly (as will be necessary in Claim 6.5), but this does not yield in an
overall improvement in our results.

6.4 Correctness on robust inputs

In the following claim we note that |K1|/n-robustness suffices for the analysis, since it ensures all
kernel assignments κ lead xκ to also output f(x) = 0.

Claim 6.5. Suppose the input x ∈ Σn is |K1|/n-robust for M ′ and f(x) = 0. Then, for every
j ∈ [q] and every assignment κ to the kernel Kj, the vote count satisfies vj(xκ) < τj with probability

at least 1− |Σ||Kj |/(10q).

Proof. For ease of notation, fix j ∈ [q], an assignment κ to Kj and x as in the statement, and
let O := Oxκ . If j > 1, define the subcollection of O in Dj by Oj := O ∩ Dj ; if j = 1, define
O1 := (O∩D1) \ C, where C ⊆ O∩D1 contains every S ∈ O∩D1 for which there exist at least α− 1
other sets S′ ∈ O ∩D1 that have the same petal as S, i.e., such that S \K1 = S′ \K1. We also take
n to be sufficiently large when necessary for an inequality to hold.
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Note that xκ may not be in the domain of f , but the robustness of x allows us to bound the
size of O = Oxκ regardless. Moreover, since f(x) = 0, we know that µx(O) ≤ σ. As µx is uniform,
each element of the multi-collection has O weight exactly 1/|µx|. Therefore, for every i ∈ [q],

|Oi| ≤ σ|µx| . (6.15)

Our goal now is, for every j ∈ [q], to upper bound the probability that there are at least τj sets
S ∈ Oj whose petal is in Q, i.e., such that S \Kj ⊆ Q.

For every j ∈ [q], let βj be such that for every set S ∈ Oj there exist at most βj − 1 other
distinct sets S′ ∈ Oj whose petal intersects the petal of S, i.e., (S \K1) ∩ (S′ \K1) ̸= ∅.

For the time being let us fix j ∈ [q]. By applying Lemma 5.5, we partition Oj into {Si : i ∈ [βj ]},
such that for every i ∈ [q],

|Si| =
|Oi|
βj

≤ σ|µx|
βj

, (6.16)

where the inequality follows from Eq. (6.15), and each Si is a simple daisy of size |O1|/βj .
Let O′

j be the multi-collection of all sets S ∈ Oj such that S \Kj ⊆ Q. In the same manner,
for every i ∈ [βj ], let S ′

i be the multi-collection of all sets S ∈ Si such that S \Kj ⊆ Q. By the
definition of vj and the fact that {Si} is a partition

vj(xκ) =
∣∣O′

j

∣∣ = βj∑
i=1

∣∣S ′
i

∣∣.
Since the event v1(xκ) ≥ τj can only occur if |S ′

i| ≥
τj
βj

for some i ∈ [βj ], we obtain

Pr [vj(x) ≥ τj ] ≤ Pr

[∣∣S ′
i

∣∣ ≥ τj
βj

for some i ∈ [βj ]

]

≤
βj∑
i=1

Pr

[∣∣S ′
i

∣∣ ≥ τj
βj

]
(union bound)

≤ βj · Pr
[∣∣S ′

1

∣∣ ≥ τj
βj

]
. (all Si have equal size)

Now our goal is to show that the event that |S ′
1| ≥

τj
βj

happens with probability at most |Σ|−|K1|

10qβj
.

Note that this is sufficient for proving the claim because plugging this into the previous equation
gives Pr [vj(x) ≥ τj ] ≤ |Σ|−|Kj |/(10q).

Since the sets in S1 are pairwise disjoint, we can and do use the Chernoff bound. In order to do
so we first bound the value of E[|S ′

1|] from above. Recall that the petal of every set S ∈ Sj ⊆ Dj

has size j (i.e., |S \Kj | = j), and therefore S is in S ′
j with probability exactly pj . So,

E[
∣∣S ′

1

∣∣] = |S1| · pj

≤ σ · |µx| · pj

βj
(by Eq. (6.16))

=
τj
2βj

.

(
by Eq. (6.2) and Eq. (6.6), σ =

1

4q
and τj =

|µx|
2q

· pj
)
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We now use the Chernoff bound, stopping at a partial result and providing separate analyses for
the cases j = 1 and j > 1.

Pr

[∣∣S ′
1

∣∣ ≥ τj
βj

]
= Pr

[∣∣S ′
1

∣∣ ≥ τj
βjE[|S ′

1|]
E[
∣∣S ′

1

∣∣]]
≤ exp

(
−
(

τj
βjE[|S ′

1|]
− 1

)2

· E[|S
′
1|]

3

)
(Chernoff bound)

≤ exp

(
− τj
3βj

)
(explained aferwards)

= exp

(
−|µx| · pj

6qβj

) (
by Eq. (6.6), τj =

|µx|
2q

· pj
)

= exp

(
− ln |Σ|npj

qβj · σ

)
,

(
by Eq. (6.3), |µx| =

6n ln |Σ|
σ

)

where the second inequality follows from

(
τj

βjE[|S′
1|]

− 1

)2

· E[|S′
1|]

3 being minimal when E[|S ′
1|] is at

its upper bound of
τj
2βj

. We next proceed to the first of the two cases.

Take j = 1. In this case, by the construction of the daisy partition (Lemma 5.2), every set
S ∈ O1 has a petal S \K1 of cardinality exactly 1. By the definition of O1, each set S ∈ O1 has at
most α− 1 other sets S′ ∈ O1 whose petal intersects the petal of S, i.e., (S \K1) ∩ (S′ \K1) ̸= ∅
(and thus S \K1 = S′ \K1, since both petals have size 1). Therefore, at most β1− 1 = α− 1 distinct
sets of O1 intersect each S ∈ O1, which follows from Eq. (6.10). Now,

exp

(
− ln |Σ|np

qα · σ

)
= exp

(
−n · p · ρ

12q

) (
by Eq. (6.10), α =

12 ln |Σ|
ρ · σ

)
= exp

(
−γ · ρ

12q
· n1−1/2q2

) (
p = γ · n−1/2q2

)
=

1

10q
exp

−γ · n1−1/q · ρ · n
1
q
− 1

2q2

12q
+ ln(10q)


≤ 1

10q
exp

(
− ln |Σ| · γ · q2 · n1−1/q

)
(large enough n)

≤ |Σ|−|K1|

10q
,

where the last inequality follows because |K1| ≤ γ · q2 · n1−1/q by Claim 6.2 (and ln |Σ| ≤ log n).
Now, take j > 1. By Claim 5.3, βj = 2h(j − 1) = 2n(j−1)/q, which implies the first equality in
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the following.

exp

(
− ln |Σ| · npj

qβj · σ

)
= exp

(
− ln |Σ| · npj

2q · σ
· n− j−1

q

)
= exp

(
−2 ln |Σ| · pj · n1− j−1

q

) (
by Eq. (6.2), σ =

1

4q

)
= exp

(
−2 ln |Σ| · γj · n1− j−1

q
− j

2q2

) (
p = γ · n−1/2q2

)
= exp

(
−2 ln |Σ| · γj · n1− j

q
+ 2q−j

2q2

)
≤ 1

10q
exp

(
− ln |Σ| · γ · n1− j

q · 2n
1
2q + ln(10q)

)
(1 < j ≤ q)

≤ 1

10q
exp

(
− ln |Σ| · γ · q2 · n1−j/q

)
(large enough n)

≤ |Σ|−|Kj |

10q
,

where the last inequality follows because |Kj | ≤ γ · q2 · n1−j/q by Claim 6.2.

6.5 Concluding the proof

We conclude the proof Theorem 6.1 by applying the two previous claims. Recall that we transformed
a ρ-robust local algorithm M for a function f , with query complexity ℓ, into a ρ-robust local
algorithm M ′ with query complexity q = O(ℓ log ℓ) and suitable error rate. Then we transformed

M ′ into a sample-based algorithm N with sample complexity n1−1/O(q2) = n1−1/O(ℓ2 log2 ℓ), an upper
bound guaranteed by the sampling step (Step 1) in the construction of N . It remains to show
correctness of the algorithm on every input in the domain of f .

We first consider errors that may arise in the sampling step. By the Chernoff bound, it chooses
more than 2pn = 2n1−j/(2q2) points to query and thus outputs arbitrarily with probability at most
1/10. Otherwise, it proceeds to the next steps.

In the next part of the proof we analyse vj(x) instead of analyzing v (of Step 2a) in algorithm
N ; this is sufficient, since by Claim 6.3, they are distributed identically over Q.

Suppose the input x ∈ Σn is such that f(x) = 0. Since x is ρ-robust, it is in particular |K1|/n-
robust (because |K1| = o(n)). Then Claim 6.5 ensures that, for every j ∈ [q] and kernel assignment

κ to Kj , the vote counter satisfies vj(xκ) ≥ τj with probability at most |Σ|−|Kj |/(10q). A union

bound over all j ∈ [q] and |Σ||Kj | assignments to the kernel Kj ensures the probability this happens,
causing N to output 1 in the threshold check step (Step 2b), is at most 1/10; otherwise, N will
enumerate over every assignment and then (correctly) output 0 in Step 3.

Now suppose x ∈ Σn is such that f(x) = 1. Then Claim 6.4 ensures that, for some j ∈ [q], the
kernel assignment κ = x|Kj

will make the vote count satisfy vj(x) ≥ τj with probability at least
9/10, in which case N (correctly) outputs 1 in the threshold check step (Step 2b).

Therefore, N proceeds beyond the sampling step with probability 9/10 and outputs correctly
(due to Claim 6.5 and Claim 6.4) with probability at least 9/10− 1/10 ≥ 2/3. This concludes the
proof of Theorem 6.1.
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Remark 6.6. Notice that the claims actually prove a stronger statement: the failure probability is
not merely 1/3, but exponentially small. For each j ∈ [q], the error probability is

exp

(
−Ω

(
n
1− j

q
+ 2q−j

2q2

))
,

but it must withstand a union bound over exp
(
O
(
n1−j/q

))
events (corresponding to the assignments

to the kernel Kj). The smallest slackness is in the case j = q, where the success probability is
still exp

(
−Ω

(
n1/2q

))
; this implies that correctness holds for exp

(
c · n1/2q

)
many executions, if the

constant c is sufficiently small. Therefore, the same samples can be reused for exponentially many
runs of possibly different algorithms.

7 Applications

In this section, we derive applications from Theorem 6.1 which range over three fields of study:
property testing, coding theory, and probabilistic proof systems. We first give a brief overview of
the applications in the following paragraphs, then proceed to the proofs in Sections 7.1 to 7.3.

Query-to-sample tradeoffs for adaptive testers. The application to property testing is an
immediate corollary of Theorem 6.1: since an ε/2-tester is a (ε/2, 0)-robust algorithm for the problem
of testing with proximity parameter ε/2, Corollary 7.1 shows that any ε/2-tester making q adaptive

queries can be transformed into a sample-based ε-tester with sample complexity n1−1/O(q2 log2 q). In
addition, we also show an application to multi-testing (Corollary 7.2).

Relaxed LDC lower bound. By a straightforward extension of our definition of robust local
algorithms to allow for outputting a special failure symbol ⊥, our framework captures relaxed
LDCs (see Section 7.2). We remark that, although standard LDCs have two-sided robustness, the
treatment of relaxed LDCs is analogous to one-sided robust algorithms.

By applying Theorem 6.1 to a relaxed local decoder once for each bit to be decoded, we obtain
a global decoder that decodes uncorrupted codewords with n1−1/O(q2 log2 q) queries; by a simple
information-theoretic argument, we obtain a rate lower bound of n = k1+1/O(q2 log2 q) for relaxed
LDCs (see Corollaries 7.8 and 7.9).

Tightness of the separation between MAPs and testers. Theorem 6.1 applies to the setting
of Merlin-Arthur proofs of proximity (MAPs) via a description of MAPs as coverings by partial
testers (Claim 7.10). In Section 7.3, we show that the existence of an adaptive MAP for a property
Π with query complexity q and proof length m implies the existence of a sample-based tester for Π
with sample complexity m · n1−1/O(q2 log2 q) (Theorem 7.11).

This implies that there exists no property admitting a MAP with query complexity q = O(1)

and logarithmic proof length (in fact, much longer proof length) that requires at least n1−1/ω(q2 log2 q)

queries for testers, showing the (near) tightness of the separation from [GR18].

Optimality of Theorem 6.1. We conclude Section 7.3 with a direct corollary of the tightness of
the aforementioned separation between MAPs and testers of [GR18], we obtain that the general
transformation in Theorem 6.1 is optimal, up to a quadratic gap in the dependency on the sample
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complexity. This follows simply because a transformation with smaller sample complexity could
have been used to improve Theorem 7.11, yielding a tester with query complexity that contradicts
the lower bound (see Theorem 7.12).

7.1 Query-to-sample tradeoffs for adaptive testers

Recall that a property tester T for property Π ⊆ Σn is an algorithm that receives explicit access to
a proximity parameter ε > 0, query access to x ∈ Σn and approximately decides membership in Π:
it accepts if x ∈ Π and rejects if x is ε-far from Π, with high probability.

By Claim 4.6, an ε-tester with ε ∈ (0, 1) is an ε-robust local algorithm that computes the
function f : Π ∪B2ε(Π) → {0, 1} defined as follows.

f(x) =

{
1, if x ∈ Π

0, if x ∈ B2ε(Π).

Note, moreover, that a local algorithm that solves f is by definition a 2ε-tester, accepting
elements of Π and rejecting points that are 2ε-far from it with high probability. A direct application
of Theorem 6.1 thus yields the following corollary, which improves upon the main result of [FLV15],
by extending it to the two-sided adaptive setting.

Corollary 7.1. For every fixed ε > 0, q ∈ N, any ε-testable property of strings in Σn with q queries
admits a sample-based 2ε-tester with sample complexity n1−1/O(q2 log2 q).

This also immediately extends an application to multitesters in [FLV15]. By standard error
reduction, for any k ∈ N, an increase of the sample complexity by a factor of O(log k) ensures each
member of a collection of k sample-based testers errs with probability 1/(3k). A union bound allows
us to reuse the same samples for all testers, so that all will output correctly with probability 2/3.

Taking k = exp
(
n1/ω(q2 log2 q)

)
, the sample complexity becomes n1−1/O(q2 log2 q) ·n1/ω(q2 log2 q) = o(n),

which yields the following corollary.

Corollary 7.2. If a property Π ⊆ Σn is the union of k = exp
(
n1/ω(q2 log2 q)

)
properties Π1, . . . ,Πk,

each ε-testable with q queries, then Π is 2ε-testable via a sample-based tester with sublinear sample
complexity.

A tester for the union simply runs all (sub-)testers, accepting if and only if at least one of them
accepts. A proof for a generalisation of this corollary, which holds for partial testers, is given in the
Section 7.3.

7.2 Stronger relaxed LDC lower bounds

Relaxed LDCs are codes that relax the notion of LDCs by allowing the local decoder to abort on a
small fraction of the indices, yet crucially still avoid errors. This seemingly modest relaxation turns
out to allow for dramatically better parameters (an exponential improvement on the rate of the
best known O(1)-query LDCs). However, since these algorithms are much stronger, obtaining lower
bounds on relaxed LDCs is significantly harder than on standard LDCs. Indeed, the first lower
bound on relaxed LDCs [GL21] was only shown more than a decade after the notion was introduced;
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this bound shows that to obtain query complexity q, a relaxed LDC C : {0, 1}k → {0, 1}n must have
blocklength

n ≥ k
1+ 1

O(22q ·log2 q) ,

In this section, we use Theorem 6.1 to obtain an improved lower bound with an exponentially
better dependency on the query complexity. We begin by recalling the definition of relaxed LDCs.

Definition 7.3 (Definition 4.12, restated). A code C : {0, 1}k → {0, 1}n whose distance is δC is a
q-local relaxed LDC with success rate ρ, decoding radius δ ∈ (0, δC/2) and error rate σ ∈ (0, 1/3] if
there exists a randomised algorithm D, known as a relaxed decoder, that, on input i ∈ [k], makes at
most q queries to an oracle w and satisfies the following conditions.

1. Completeness: For any i ∈ [k] and w = C(x), where x ∈ {0, 1}k,

Pr[Dw(i) = xi] ≥ 1− σ .

2. Relaxed Decoding: For any i ∈ [k] and w ∈ {0, 1}n that is δ-close to a (unique) codeword C(x),

Pr[Dw(i) ∈ {xi,⊥}] ≥ 1− σ .

3. Success Rate: There exists a constant ρ > 0 such that, for any w ∈ {0, 1}n that is δ-close to a
codeword C(x), there exists a set Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw,

Pr[Dw(i) = xi] ≥ 2/3 .

Remark 7.4. The first two conditions imply the latter, as shown by [BGH+06]. Therefore, it is
not necessary to show the success rate condition when verifying that an algorithm D is a relaxed
local decoder.

Note that, whenever Dw outputs ⊥, it detected that the input is not valid, since it is inconsistent
with any codeword C(x). We slightly generalise local algorithms (Definition 4.1) to capture this
behaviour, by allowing them to output ⊥ as well as the correct function evaluation f(z, x) (except
for a prescribed set of valid inputs). Formally,

Definition 7.5 (Relaxed local algorithm). Let Σ be a finite alphabet, Z a finite set and {Pz : z ∈ Z}
a family of sets Pz ⊆ Σn indexed by Z. With P := {(z, x) : z ∈ Z, x ∈ Pz}, let f : P → {0, 1} be a
partial function.

A relaxed q-local algorithm M for computing f with valid input set V ⊆ Σn and error rate σ
receives explicit access to z ∈ Z, query access to x ∈ Pz, makes at most q queries to x and satisfies

Pr
[
Mx(z) ∈ {f(z, x),⊥}

]
≥ 1− σ.

Moreover, if x ∈ V , then M satisfies

Pr[Mx(z) = f(z, x)] ≥ 1− σ.

We shall also need to generalise the notion of robustness (Definition 4.2) accordingly.
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Definition 7.6 (Robustness). Let ρ > 0. A local algorithm M for computing f : P → {0, 1} is
ρ-robust at the point (z, x) ∈ P if Pr[Mw(z) ∈ {f(z, x),⊥}] ≥ 1− σ for all w ∈ Bρ(x). We say that
M is (ρ0, ρ1)-robust if, for all z ∈ Z and b ∈ {0, 1}, M is ρb-robust at every x such that f(z, x) = b.

We remark that robustness for algorithms that allow aborting allows the correct value to change
to ⊥ (but, crucially, not to the wrong value) even if only one bit is changed. This makes the
argument more involved than an argument for LDCs, and indeed, our theorem for relaxed LDCs
relies on the full machinery of Theorem 6.1.

Note that an algorithm that ignores its input and always outputs ⊥ fits both definitions above,
but has no valid inputs and clearly does not display any interesting behaviour. We also remark that
the set of valid inputs captures completeness (but not the success rate) in the case of relaxed LDCs.

With these extensions, a relaxed local decoder D with decoding radius δ fits the definition of
a (relaxed) local algorithm that receives i ∈ [k] as explicit input, where the code C comprises the
valid inputs and every x ∈ C is δ-robust for D.

While a relaxed local algorithm is very similar in flavour to a standard local algorithm, it may not
be entirely clear whether a transformation analogous to Theorem 6.1 holds in this case as well. We
next show that one indeed does: with small modifications to the algorithm constructed in Section 6.1,
we leverage the same analysis of Section 6.2 to prove the following variant of Theorem 6.1.

Theorem 7.7. Suppose there exists a (ρ0, ρ1)-robust relaxed local algorithm M for computing the
function f : P → {0, 1} (where Z × Σn) with query complexity ℓ = O(1) and ρ0, ρ1 = Ω(1). Let
V ⊆ Σn be the valid inputs of M . Then, there exists a sample-based relaxed local algorithm N for
f with sample complexity n1−1/O(ℓ2 log2 ℓ) with the same set V of valid inputs.

Proof. Throughout the proof, we assume the explicit input to be fixed and omit it from the notation.
First, note that error reduction (Claim 5.8) and randomness reduction (Claim 5.9) apply in the
relaxed setting: the analysis is identical on valid inputs, and holds likewise for the remainder of
the domain of f (with correctness of M relaxed to be Mx ∈ {f(x),⊥}). Thus Lemma 5.10 enables
the transformation of M into another robust algorithm M ′ with small error rate that uniformly
samples a decision tree from a multi-collection of small size.

Recall that the construction of the sample-based algorithm in Section 6.1 uses a collection of
triplets obtained from the behaviour of M ′ when it outputs 1. A corresponding collection can be
obtained for the case where M ′ outputs 0. Denote by Tb the collection that corresponds to output
b ∈ {0, 1}, and let Nb be the sample-based algorithm that

• uses the triplets Tb to construct its daisy partition in the preprocessing step;
• outputs b if the counter crosses the threshold in Step 2b; and
• outputs ⊥ in Step 3 if the threshold is never reached;

but is otherwise the same as the construction of Section 6.1.
The analysis of Section 6.2 applies to Nx

b : if x ∈ V , the analysis of Claim 6.4 is identical; while
if x is robust and f(x) = ¬b, Claim 6.5 requires a lower bound on the probability that M ′ outputs b
when its input is x (and enables an application of the volume lemma), which holds by the definition
of error rate of a relaxed local algorithm. Therefore, the probability of each the following events is
bounded by 1/10:

(i) Nx
b outputs arbitrarily in the sampling step;

(ii) Nx
b outputs ⊥ when f(x) = b; and
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(iii) Nx
b outputs b when x is robust and f(x) = ¬b.

Finally, the relaxed sample-based algorithm N simply executes the sampling step of N0 then
the enumeration steps of N0 and N1 on these samples, outputs b if exactly one of Nb outputs b,
and outputs ⊥ otherwise. Then, Nx = f(x) if x ∈ V and Nx = ⊥ if x /∈ V , with probability
7/10 ≥ 2/3.

By casting a relaxed decoder as a robust relaxed local algorithm and applying Theorem 7.7, we
obtain the following corollary.

Corollary 7.8. Any binary code C : {0, 1}k → {0, 1}n that admits a relaxed local decoder D with
decoding radius δ and query complexity q = O(1) also admits a sample-based relaxed local decoder

D′ with decoding radius δ/2 and sample complexity n1−1/O(q2 log2 q).

We are now ready to state the following corollary, which improves on the previous best rate
lower bound for relaxed LDCs [GL21] by an application of the theorem above to the setting of
relaxed local decoding. This follows from the construction of a global decoder (which is able to
decode the entire message) that is only guaranteed to succeed with high probability when its input
is a perfectly valid codeword.

Corollary 7.9. Any code C : {0, 1}k → {0, 1}n that is relaxed locally decodable with q = O(1)
queries satisfies

n = k
1+ 1

O(q2 log2 q) .

Proof. Let D′ be the sample-based relaxed LDC with sample complexity q′ obtained by Corollary 7.8
from a relaxed LDC with query complexity q for the code C. Reduce the error rate of D′ to 1/3k by
repeating the algorithm O(log k) times and taking the majority output, thus increasing the sample
complexity to O(q′ · log k) = n1−1/t with t = O(q2 log2 q).

Now, consider the global decoder G defined as follows: on input w, execute the sampling stage
once and the enumeration stages of Dw(1), . . . , Dw(k) on the same samples. A union bound ensures
that, with probability at least 2/3, the outputs satisfy Dw(i) = xi for all i if w = C(x).

The global decoder G obtains k bits of information from n1−1/t bits with probability above 1/2.
Information-theoretically, we must have

k ≤ n1−1/t

2
=

n
t−1
t

2
,

so that n ≥ (2k)1+
1

t−1 ≥ 2k1+
1

t−1 . Since t = O(q2 log2 q), it follows that n = k1+1/O(q2 log2 q).

7.3 A maximal separation between testers and proofs of proximity

Recall that a Merlin-Arthur proof of proximity (MAP, for short) for property Π is a local algorithm
that receives explicit access to a proximity parameter ε > 0 and a purported proof string π, as well
as query access to a string x ∈ Σn. It uses the information encoded in π to decide which coordinates
of x to query, accepting if x ∈ Π and π is a valid proof for x, and rejecting if x is ε-far from Π. In
particular, a MAP with proof length 0 is simply a tester. The complexity of a MAP is defined as the
sum of its proof length and query complexity. For simplicity, we consider the proximity parameter ε
to be a fixed constant in the following discussion.
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A partial tester T is a relaxation of the standard definition of a tester, that accepts inputs inside
a property Π1 and rejects inputs that are far from a larger property Π2 that contains Π1 (standard
testing is the case where Π2 = Π1). We first formalise an observation made in [FGL14], which shows
an equivalence between MAPs and coverings by partial testers.

Claim 7.10. A MAP T for property Π ⊆ Σn with proof complexity m, error rate σ and query
complexity q = q(n, ε) is equivalent to a collection of partial testers {Ti : i ∈ [|Σ|m]}. Each Ti(ε)
accepts inputs in the property Πi and rejects inputs that are ε-far from Π, with the same query
complexity q and error rate σ as T . The properties Πi satisfy Πi ⊆ Bε(Π) and Π ⊆ ∪iΠi.

Proof. Consider a MAP T with parameters as in the statement, and define Ti(ε) := T (ε, i) for each
purported proof i ∈ [|Σ|m]. Clearly the query complexity and error rate of Ti match those of T , and
these testers reject points that are ε-far from Π. The property Πi is, by definition, the set of inputs
that Ti accepts (with probability at least 1 − σ), which is contained in Bε(Π) (since elements of
Bε(Π) are rejected), and may possibly be empty. But since the definition of a MAP ensures that,
for each x ∈ Π, the tester T x

i accepts for some proof i (with probability 1− σ), we have Π ⊆ ∪iΠi.
Consider, now, a collection of testers {Ti : i ∈ [|Σ|m]} as in the statement, and define a MAP T

that simply selects the tester indexed by the received proof string; i.e., T (ε, i) := Ti(ε). Then, with
probability at least 1− σ, the MAP T rejects inputs that are ε-far from Π and accepts x ∈ Π when
its proof string is i ∈ [|Σ|m] such that x ∈ Πi.

As discussed in the introduction, one of the most fundamental questions regarding proofs of
proximity is their relative strength in comparison to testers; that is, whether verifying a proof for
an approximate decision problem can be done significantly more efficiently than solving it. This can
be cast as an analogue of the P versus NP question for property testing.

Fortunately, in the setting of property testing, the problem of verification versus decision is
very much tractable: one of the main results in [GR18] shows the existence of a property Π which:
(1) admits a MAP with proof length O(log n) and query complexity q = O(1); and (2) requires at
least n1−1/Ω(q) queries to be tested without access to a proof. (The lower bound of [GR18] is stated
in a slightly weaker form. However, it is straightforward to see that the stronger form holds; see
discussion at the end of this section.)

While this implies a nearly exponential separation between the power of testers and MAPs, it
remained open whether the aforementioned sublinear lower bound on testing is an artefact of the
techniques, or whether it is possible to obtain a stronger separation, where the property is harder
for testers.

Claim 7.10 and Theorem 6.1 allow us to prove the following corollary, which shows that the
foregoing separation is nearly tight.

Theorem 7.11. If a property Π ⊆ Σn admits a MAP with query complexity q, proof length m
and proximity parameter ε = Ω(1), then it admits a sample-based 2ε-tester with sample complexity

m · n1−1/O(q2 log2 q).

Applying Theorem 7.11 to the special case of MAPs with logarithmic proof length, we obtain a
sample-based tester with sample complexity n1−1/O(q2 log2 q), showing that the separation in [GR18]
is nearly optimal, and in particular that there cannot be a fully exponential separation between
MAPs and testers.
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Proof (of Theorem 7.11). Let Π be a property and T be a MAP with proof length m as in the
statement. By Claim 7.10, there exists a collection of partial testers {Ti : i ≤ |Σ|m} with query
complexity q that satisfy the following. Each Ti accepts inputs in a property Πi and rejects inputs
that are ε-far from Π, with Π ⊆ ∪iΠi. By applying Corollary 7.1 to each of these testers, we obtain
a collection of sample-based testers {Si} with sample complexity q′ = n1−1/O(q2 log2 q) for the same
partial properties, but which only reject inputs that are 2ε-far from Π.

The execution of each of the Si proceeds in two steps, as defined in Section 6.1: sampling (Step 1)
and enumeration (Step 2). Note that the sampling step is exactly the same for every Si.

Let k = O(m log |Σ|) such that taking the majority output from k repetitions of Si yields an
error rate of 1/(3|Σ|m). We define a new sample-based algorithm S that repeats the following steps
k times:

1. Execute both steps of S1 (sampling and enumeration), recording the output.

2. For all 1 < i ≤ |Σ|m, only execute the enumeration step of Si on the samples obtained in
Item 1, and record the output.

After all k iterations have finished, check if at least k/2 outputs of Si were 1 for some i. If so, output
1, and output 0 otherwise.

First suppose S receives an input x ∈ Π, and let i ≤ |Σ|m such that x ∈ Πi. Then the majority
output of the enumerations steps of Si is 1 with probability 1− 1/(3|Σ|m) ≥ 2/3. Now suppose S
receives an input x that is 2ε-far from Π. Then, for each i, the majority output of the enumeration
step of Si is 1 with probability at most 1/(3|Σ|m). A union bound over all i ≤ |Σ|m ensures this
happens with probability at least 1/3, in which case S correctly outputs 0.

S is therefore a 2ε-tester for the property Π with sample complexity k · q′ = m · n1−1/O(q2 log2 q)

(recall that log |Σ| ≤ log n), and the theorem follows.

Interestingly, as a direct corollary of Theorem 7.11, we obtain that the general transformation
in Theorem 6.1 is optimal, up to a quadratic gap in the dependency on the sample complexity, as
a transformation with a smaller sample complexity could have been used to transform the MAP
construction in the MAPs-vs-testers separation of [GR18], yielding a tester with query complexity
that contradicts the lower bound in that result.

Theorem 7.12. There does not exist a transformation that takes a robust local algorithm with
query complexity q and transforms it into a sample-based local algorithm with sample complexity at
most n1−1/o(q).

Proof. Let Π be the encoded intersecting messages property considered in [GR18, Section 3.1], for
which it was shown that Π has a MAP with query complexity q and logarithmic proof complexity,
but every tester for Π requires at least n1−1/Ω(q) queries. Suppose towards contradiction that a
transformation as in the hypothesis exists. Then, applying the transformation to the aforementioned
MAP (as in Theorem 7.11) yields a tester for Π with query complexity n1−1/o(q), in contradiction to
the lower bound.

On the lower bound in [GR18]. The separation between MAPs and testers in [GR18] is
proved with respect to a property of strings that are encoded by relaxed LDCs; namely, the encoded
intersecting messages property, defined as

EIMC =
{(

C(x), C(y)
)

: x, y ∈ {0, 1}k, k ∈ N and ∃i ∈ [k] s.t. xi ̸= 0 and yi ̸= 0
}
,
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where C : {0, 1}k → {0, 1}n is a code with linear distance, which is both a relaxed LDC and
an LTC. In [GR18] it is shown that there exists a MAP with proof length O(log n) and query
complexity q = O(1), and crucially for us, that any tester requires Ω(k) queries to be tested without
access to a proof. The best constructions of codes that satisfy the aforementioned conditions
[BGH+06, CGS22, AS21] achieve blocklength n = O(k1+1/q) = k1+1/Ω(q), and hence the stated
lower bound follows.
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A Deferred proofs

In this appendix we provide the proofs of two claims and a lemma obtained from their combination,
which were deferred in Section 5: Claim 5.8 provides an amplification procedure and Claim 5.9 a
randomness reduction procedure for local algorithms, while Lemma 5.10 obtains both simultaneously.
We remark that both claims follow from a straightforward adaptation of standard techniques, and
include these proofs for completeness. We begin with the amplification procedure.

Claim A.1 (Claim 5.8 restated). Let M be a (ρ0, ρ1)-robust algorithm for computing f : P → {0, 1}
(where P ⊂ Z × Σn) with error rate σ ≤ 1/3, query complexity q and randomness complexity r.

For any σ′ > 0, there exists a (ρ0, ρ1)-robust algorithm N for computing the same function with
error rate σ′, query complexity 108q log(1/σ′)/σ and randomness complexity 108r log(1/σ′)/σ.

Proof. Define N as the algorithm that makes t = 108 log(1/σ′)/σ independent runs of M and
outputs the most frequent symbol, resolving ties arbitrarily. The query and randomness complexities
of N clearly match the statement, and we must now prove that the error rate is indeed σ′ and that
N is (ρ0, ρ1)-robust.

Fix z ∈ Z and x ∈ Σn in the domain of f and let b := f(z, x). As M is ρb-robust at x, the
algorithm satisfies Pr[My(z) = b] ≥ 1− σ for all y ∈ Bρb(x). By the Chernoff bound,

Pr [My(z) ̸= b for at least (σ + 1/6)t runs] ≤ e−
σt
3·36 = e− log 1

σ′ < 2− log 1
σ′ = σ′.

The majority rule will thus yield outcome b with probability at least 1− σ′, since at least 1− (σ +
1/6)t ≥ t/2 runs output b (except with probability at most σ′). As x, z and y ∈ Bρb(x) are arbitrary,
the result follows.

We proceed to the randomness reduction transformation.

Claim A.2 (Claim 5.9, restated). Let M be a (ρ0, ρ1)-robust algorithm for computing f : P → {0, 1}
(where P ⊂ Z × Σn) with error rate σ, query complexity q and randomness complexity r.

There exists a (ρ0, ρ1)-robust algorithm N for computing the same function with error rate
2σ and query complexity q, whose distribution µ̃N has support size 3n ln |Σ|/σ. In particular, the
randomness complexity of N is bounded by log(n/σ) + log log |Σ|+ 2.

Proof. Fix any explicit input z ∈ Z. Let {xj} be an enumeration of the inputs in Σn such that
Pr[Mxj (z) = bj ] ≥ 1− σ for some bj ∈ {0, 1}. Note that this includes points in the neighbourhood
of a point at which M is robust which are not necessarily in the domain of f , so it suffices to
show Pr[Nxj (z) = bj ] ≥ 1− 2σ to prove the claim for N with the required query complexity and
distribution.

Define the 2r×|{xj}| matrix E with entries in {0, 1} as follows. Denote by bij ∈ {0, 1} the output
of Mxj (z) when it executes according to the decision tree indexed by (the binary representation of)
i ∈ [2r]. Then,

Ei,j =

{
1, if bij ̸= bj
0, otherwise.

Note that Ei,j simply indicates whether Mxj (z) outputs incorrectly on input when the outcome of
the algorithm’s coin flips is (the binary representation of) i. By construction, for each fixed j, a
fraction of at most σ indices i ∈ [2r] are such that Ei,j = 1.
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Let t = 3n ln |Σ|/σ and I1, . . . , It be independent random variables uniformly distributed in [2r].
For each fixed j ≤ |{xj}| ≤ |Σ|n and k ≤ t, we have E[EIk,j ] ≤ σ. By the Chernoff bound,

Pr

[
t∑

k=1

EIk,j ≥ 2σt

]
≤ e−

σt
3 = e−n ln |Σ| < |Σ|−n.

Applying the union bound over all j ≤ |Σ|n, we obtain

Pr

[
t∑

k=1

EIk,j ≥ 2σt for some j

]
< 1.

We have thus shown, via the probabilistic method, the existence of a multi-set Rz of size
3n ln |Σ|/σ such that

Pr[Nxj (z) ̸= bj ] ≤ 2σ,

where N samples its random strings uniformly from Rz (rather than from {0, 1}r), using the
corresponding decision trees of M . The size of Sz is thus

∣∣µ̃N
∣∣ = 3n ln |Σ|/σ, and this sampling can

be performed with log(n/σ) + log log |Σ|+ 2 random coins.
Since the decision trees of N are simply a subcollection of those of M , the query complexity of

N is q and the claim follows.

We now conclude with the following lemma, obtained by suitably combining the foregoing claims
in sequence.

Lemma A.3 (Lemma 5.10, restated). Assume there exists a ρ-robust algorithm M for computing f
with query complexity ℓ, error rate 1/3 and arbitrary randomness complexity. Then there exists a
ρ-robust q-local algorithm M ′ for f with error rate

σ =
1

4q

such that q
log 8q = O(ℓ), or, equivalently,

q = O(ℓ log ℓ).

Moreover, the distribution of M ′ is uniform over a multi-collection of decision trees of size 6n ln |Σ|/σ.

Proof. We apply both transformations in order, omitting mention of parameters that are left
unchanged. Recall that M may have arbitrarily large randomness complexity.

1. Apply Claim 5.8 (error reduction) to M , obtaining M ′′ with error rate σ′′ = 1/8q and query
complexity q = O(ℓ log(1/σ′′)) = O(ℓ log(8q)) (as well as larger randomness complexity).

2. Apply Claim 5.9 (randomness reduction) to M ′′, thereby obtaining a new algorithm M ′ with
error rate σ = 2σ′′ = 1

4q and support size 3n ln |Σ|/σ′′ = 6n ln |Σ|/σ on its distribution over
decision trees.
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