
A structural theorem for local algorithms with
applications to coding, testing and privacy

Marcel Dall’Agnol
University of Warwick

Tom Gur
University of Warwick

Oded Lachish
Birkbeck, University of London

SODA 2021



An efficient transformation from local
to sample-based algorithms.

Local: inspects a small part of the input string x
Sample-based: access by random (i , xi) samples

[Goldreich and Ron, 2016]

But why?
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Many (rich) algorithmic problems are inherently local:

• Testing

• Local codes

• PCPs and PCPPs

• LCAs

• . . .

Sample-based access buys

• Privacy
• Efficient repetition: running L1, . . . , Lt with query complexity

q on the same input takes
• O(qt log t) queries in general
• O(q log t) queries by reusing samples

• . . .
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Property tester

Property Π ⊆ {0, 1}n, proximity parameter ε > 0

Tester T computes

f (x) =

{
1, if x ∈ Π
0, if x is ε-far from Π.
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Local decoder

Code C : {0, 1}k → {0, 1}n, decoding radius δ > 0

Decoder D computes

f (w , i) = xi ,when w is δ-close to C (x).
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Definition

Let X ⊂ {0, 1}n. An algorithm L computes f : X × Z → {0, 1}
with error rate σ if

P[Lx(z) = f (x , z)] ≥ 1− σ. (∀x ∈ X )

If L makes q = o(n) queries to the bit string, it is local.

If

P[Ly (z) = 0] ≥ 1− σ, ∀y ρ-close to a 0-input x ,

it is ρ-robust.

Remarks:

• Robust 0-inputs without loss of generality.

• f is either partial or constant.

• Captures LTCs, LCCs, MAPs, PCPPs...
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Theorem

Any function computed by an Ω(1)-robust local algorithm with
query complexity q admits a sample-based algorithm with sample
complexity

n1−Ω(1/(q2 log2 q)).

(q = Ω(
√

log n) =⇒ sample complexity Ω(n))

Theorem

This transformation cannot achieve sample complexity

n1−ω(1/q).
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Applications (q = O(1))

Improved lower bound on the blocklength of a relaxed LDC.

State-of-the-art was n = k1+Ω̃(1/22q) [Gur and Lachish, 2020].

Corollary

Any code C : {0, 1}k → {0, 1}n that is relaxed locally decodable
with q queries satisfies

n = k1+Ω̃(1/q2).

([Asadi and Shinkar, 2020] achieves n = k1+O(1/q), improving on
the construction of [Ben-Sasson et al., 2004])
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Applications (q = O(1))

Known “P vs. NP separation for testing” is essentially optimal.
∃ property testable with q queries and O(log n)-long proof, while
n1−O(1/q) are needed without a proof [Gur and Rothblum, 2018].

Corollary

If a property is ε-testable with a short proof and q queries, then it
is 2ε-testable with n1−Ω̃(1/q2) queries and no proof. In particular, a
O(1) vs. Ω(n) separation is impossible.

(short: sublinear in the sample complexity)
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Applications (q = O(1))

Extension of [Fischer et al., 2015] to adaptive testers.

Corollary

Any property ε-testable with q queries admits a sample-based
2ε-tester with sample complexity n1−Ω̃(1/q2).
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Q ∈ Q sampled with probability µ(Q)
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Goal: sample many query sets of L and aggregate its “votes”
(p ≈ 1/nα)

Output 1 ⇐⇒ some kernel assignment yields all votes for 1
( = 0, = 1; = vote for 0, = vote for 1)

Output 0!
Query at least one set with probability ≤ p

Query ≈ p|Q| partial sets with high probability
Fill in the kernel arbitrarily – robustness!
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The bottlenecks

With error σ ≈ 1/q, some daisy approximates L and we throw
away the rest. [Gur and Lachish, 2020]

Adaptivity: decision trees vs. query sets. Some daisy works,
but we don’t know which!

Two-sided error: no hope for a consensus.
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Daisy partition theorem

Q

D0 D1 D2 D3

An arbitrary Q (|Q| ≈ n) can be partitioned into D0, . . . ,Dq.
Di has:

• petals of size i

• small kernel |Ki |

( =⇒ few kernel assignments)

• small intersection

(+ Hajnal-Szemerédi =⇒ many sampled petals)
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The algorithm

1 Sample each element of [n] with probability p.

2 For every i ∈ [q] and assignment κi to Ki :
If L votes 1 on ≥ τi sets with sampled petals, output 1.

3 Otherwise, output 0.
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Open problems

• Closing the quadratic gap between RLDC blocklength lower
and upper bounds (k1+Ω̃(1/q2) vs. k1+O(1/q)).

• PCPP lower bounds by similar techniques?

• Capturing, e.g., PAC learning or local computation
algorithms?
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