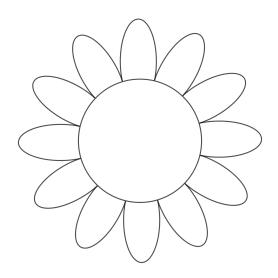
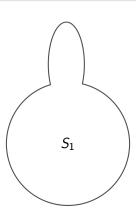
Sunflowers, daisies and local codes

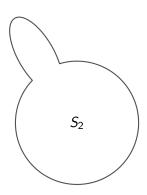
Marcel de Sena (joint with Tom Gur and Oded Lachish)

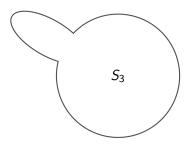
By KMJ, CC BY-SA 3.0. URL: https://commons.wikimedia.org/w/index.php?curid=3301347

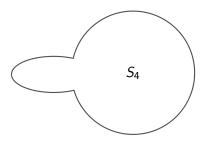


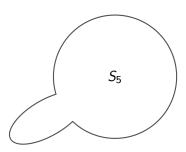
$$\mathcal{S} = \{S_1, S_2, \dots, S_{12}\}$$



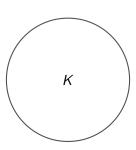


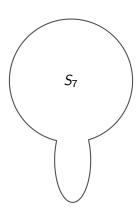












$$P_7 = S_7 \setminus K_7$$

Definition

A sunflower is a collection S of q-sets such that $S \cap S' = \bigcap_{T \in S} T = K$ for any distinct $S, S' \in S$. The set K is called the *kernel*, and each $P = S \setminus K$ is a *petal*.

Sunflower lemma [ER60]

If $|\mathcal{S}| \geq q! (s-1)^q = \Theta(sq)^q$, then \mathcal{S} contains a sunflower of size s.

Sunflower lemma [ER60]

If $|\mathcal{S}| \geq q!(s-1)^q = \Theta(sq)^q$, then \mathcal{S} contains a sunflower of size s.

Sunflower conjecture [ER60]

For some $c: \mathbb{N} \to \mathbb{N}$, if $|\mathcal{S}| \ge c(s)^q$, then \mathcal{S} contains a sunflower of size s.

Sunflower lemma [ER60]

If $|\mathcal{S}| \geq q!(s-1)^q = \Theta(sq)^q$, then \mathcal{S} contains a sunflower of size s.

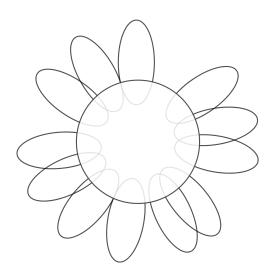
Sunflower conjecture [ER60]

For some $c: \mathbb{N} \to \mathbb{N}$, if $|\mathcal{S}| \ge c(s)^q$, then \mathcal{S} contains a sunflower of size s.

Theorem [ALWZ19]

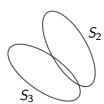
If $|\mathcal{S}| = \Omega(s \log q)^q$, then \mathcal{S} contains a sunflower of size s.

By Pbrundel, CC BY-SA 3.0. URL: https://commons.wikimedia.org/w/index.php?curid=3972427



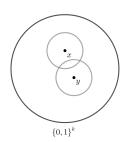
$$\mathcal{D} = \{S_1, S_2, \dots, S_{12}\}$$

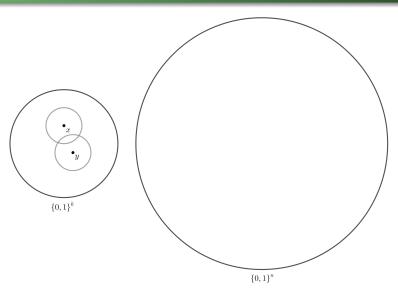
$$P_1 = S_1 \setminus K$$

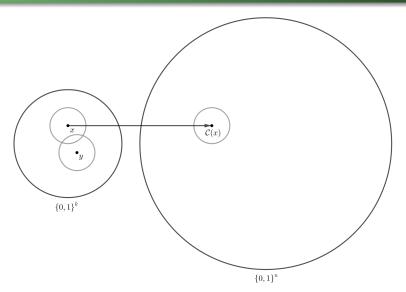


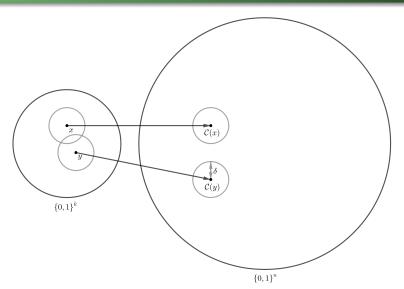
Definition

A *t-daisy* with *kernel* K is a collection \mathcal{D} of *q*-sets such that each $i \notin K$ is contained in at most t members of \mathcal{D} .









Definition

An *error-correcting code* is an injective function $C: \Gamma^k \to \Sigma^n$ where the preimage (message) is recoverable after significant corruption of the image (codeword).

If a message is recoverable from at most Δn corrupted coordinates, Δ is the (relative) distance of the code. k is its message length and n is its blocklength.

Definition

A binary error-correcting code is an injective function $\mathcal{C}:\{0,1\}^k \to \{0,1\}^n$ where the preimage (message) is recoverable after significant corruption of the image (codeword).

If a message is recoverable from at most Δn corrupted coordinates, Δ is the (relative) distance of the code. k is its message length and n is its blocklength.

Codes with large distance are resilient to corruption; codes with large $rate \ k/n$ have little redundancy. **Goal: find codes with high rate and distance.**

Codes with large distance are resilient to corruption; codes with large $rate \ k/n$ have little redundancy. **Goal: find codes with high rate and distance.**

Singleton bound

For any code $C: \Gamma^k \to \Sigma^n$,

$$|\Gamma|^{k/n} \leq |\Sigma|^{1-\Delta+1/n}$$
.

Codes with large distance are resilient to corruption; codes with large $rate \ k/n$ have little redundancy. **Goal: find codes with high rate and distance.**

Singleton bound

For any binary code C,

$$k/n + \Delta \le 1 - 1/n < 1$$
.

Locally decodable codes

Definition

 \mathcal{C} is a *locally decodable code* (LDC) if one need only look at a small number of coordinates of $w \approx \mathcal{C}(x)$ to decode x_i .

Locally decodable codes

Definition

There exists a (randomised) algorithm D with decoding radius δ such that, if w is δ -close to C(x), then, $\forall i$,

$$\mathbb{P}[D^w(i) = x_i] \ge 2/3$$

and D makes q = o(n) queries to w.

Locally decodable codes

Definition

There exists a (randomised) algorithm D with decoding radius δ such that, if w is δ -close to C(x), then, $\forall i$,

$$\mathbb{P}[D^w(i) = x_i] \ge 2/3$$

and D makes q = O(1) queries to w.

Relaxed locally decodable codes

Definition

 $\mathcal C$ is a *relaxed locally decodable code* (RLDC) if $\mathcal C$ is (almost) locally decodable but D can sometimes fail and return \bot .

Relaxed locally decodable codes

Definition

There exists a (randomised) algorithm D with decoding radius δ such that

• if w = C(x), then

$$\mathbb{P}[D^w(i) = x_i] \ge 2/3;$$

• if w is δ -close to C(x), then

$$\mathbb{P}[D^w(i) \in \{x_i, \bot\}] \ge 2/3;$$

and D makes q = O(1) queries to w.

Theorem [GL19]

Any one-sided RLDC $\mathcal C$ with message length k and blocklength n satisfies

$$n=k^{1+\Omega\left(\frac{1}{2^q}\right)}.$$

Theorem [GL19]

Any $one\mbox{-}sided$ RLDC ${\cal C}$ with message length k and blocklength n satisfies

$$n=k^{1+\Omega\left(\frac{1}{2^q}\right)}.$$

Theorem

Any two-sided RLDC $\mathcal C$ with message length k and blocklength n satisfies

$$n=k^{1+\Omega\left(\frac{1}{q^2}\right)}.$$

One-sided RLDCs

Definition

There exists a (randomised) algorithm D with $decoding\ radius\ \delta$ such that

• if w = C(x), then

$$\mathbb{P}[D^w(i) = x_i] = 1;$$

• if w is δ -close to C(x), then

$$\mathbb{P}[D^w(i) = x_i] \ge 2/3;$$

and D makes q = o(n) queries to w.

- lacktriangle Local decoder D' as decision trees and predicates
- \bigcirc Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- @ G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

- $oldsymbol{0}$ Local decoder D' as decision trees and predicates
- ② Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- @ G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

- lacktriangle Local decoder D' as decision trees and predicates
- ② Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- \odot From D, obtain global decoder G using daisies!
- @ G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

- lacktriangle Local decoder D' as decision trees and predicates
- ② Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- \odot From D, obtain global decoder G using daisies!
- @ G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

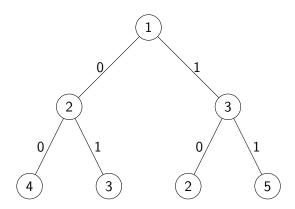
- $oldsymbol{0}$ Local decoder D' as decision trees and predicates
- Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- \odot From D, obtain global decoder G using daisies!
- @ G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

- $oldsymbol{0}$ Local decoder D' as decision trees and predicates
- ② Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- \odot From D, obtain global decoder G using daisies!
- @ G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

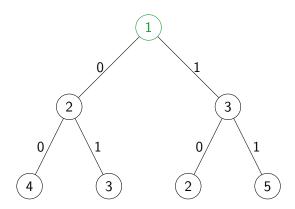
- ② Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- @ G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

- lacktriangle Local decoder D' as decision trees and predicates
- ② Preprocessing: from D', obtain D after
 - Randomness reduction
 - Independence from decision trees
 - Soundness amplification
 - Combinatorialisation
- 3 From D, obtain global decoder G using daisies!
- **4** G decodes k bits of a valid codeword with high probability and o(n) queries: information theoretically, $n = \omega(k)$.

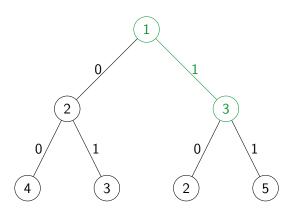
$$w=(1,0,0,\ldots)$$



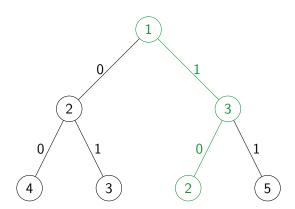
$$w=(1,0,0,\ldots)$$



$$w=(1,0,0,\ldots)$$



$$w=(1,0,0,\ldots)$$



Input w and tree T determine set $S = \{1, 2, 3\}$.

$$D^{w}(i) = f_{i,T}(1,0,0)$$

$$D(i) = (\mu_i, \{f_{i,T} : T \in \mathcal{T}_i\})$$

Distribution μ_i over decision trees \mathcal{T}_i capture randomness of D. Predicates $f_{i,\mathcal{T}}:\{0,1\}^q \to \{0,1,\bot\}$ determine its output.

Lemma (randomness reduction)

 \exists relaxed decoder D with query complexity O(q') and randomness complexity $\log(n) + O(1)$.

- message length k;
- blocklength n;
- randomness complexity r;
- decoding radius δ ;
- query complexity q';
- soundness ε' .

Lemma (independence from decision trees)

 \exists local decoder D with soundness $O(\varepsilon')$ whose predicates only depends on sets.

- message length k;
- blocklength n;
- randomness complexity r;
- decoding radius δ ;
- query complexity q';
- soundness ε' .

Lemma (soundness amplification)

For any $\varepsilon > 0$, \exists relaxed decoder D with query complexity $O(q' \cdot \log(\varepsilon'/\varepsilon))$ and soundness ε .

- message length k;
- blocklength n;
- randomness complexity r;
- decoding radius δ ;
- query complexity q';
- soundness ε' .

Lemma (combinatorialisation)

 \exists combinatorial relaxed decoder D with soundness $O(\varepsilon')$.

- message length k;
- blocklength n;
- randomness complexity r;
- decoding radius δ ;
- query complexity q';
- soundness ε' .

Corollary

There exists a *combinatorial* relaxed decoder *D* with:

- message length k;
- blocklength n;
- randomness complexity $\log(n) + \rho$;
- decoding radius δ ;
- query complexity q = O(q');
- soundness $\varepsilon = O\left(\min\{q^{-1}, 2^{-\rho}\}\right)$.

Daisy partition lemma

Let μ be a distribution over $2^{[n]}$ whose support is $S \subseteq {[n] \choose q}$, with $|S| = \alpha n$.

Define $m = \max\{1, j-1\}$. Then $\mathcal S$ can be partitioned into

$$\{\mathcal{D}_j: j \in [q]\},$$

where \mathcal{D}_j is a $\alpha n^{m/q}$ -daisy with petals of size j.

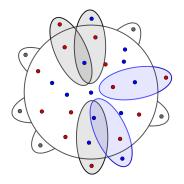
The kernel of \mathcal{D}_i satisfies $|K_i| \leq q n^{1-j/q}$.

Binomial sampling with $p = n^{-\frac{1}{2q^2}}$

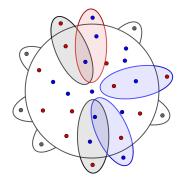
 \mathcal{D}_1 , assignment 1



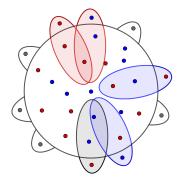
 \mathcal{D}_1 , assignment 2



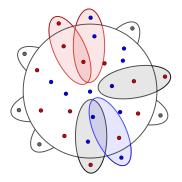
 \mathcal{D}_1 , assignment 3



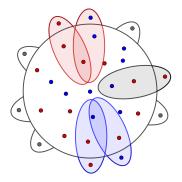
 \mathcal{D}_1 , assignment 4



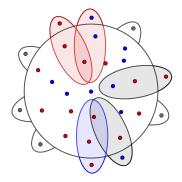
 \mathcal{D}_1 , assignment 5



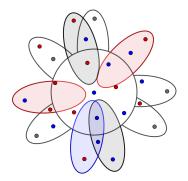
 \mathcal{D}_1 , assignment 6



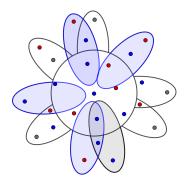
 \mathcal{D}_1 , assignment $2^{|\mathcal{K}_1|}$

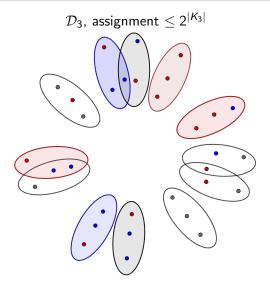


 \mathcal{D}_2 , assignment 1



 \mathcal{D}_2 , assignment $\leq 2^{|K_2|}$: output •





Volume lemma, upper bound

For every daisy and kernel assignment κ , the *bad q*-sets \mathcal{B} (that decode to the wrong value) cover a small fraction of the codeword. Thus, $|\mathcal{B}| = O(n)$.

Lemma (soundness)

For every daisy \mathcal{D}_j and kernel assignment κ , the collection of bad queried q-sets satisfies $|\mathcal{B} \cap \mathcal{Q}_j| < \tau_j$ with high probability.

Volume lemma, lower bound

Under the correct kernel assignment, for some daisy \mathcal{D}_j , the queried q-sets \mathcal{Q}_j cover a large fraction of the codeword. Thus, $|\mathcal{Q}_i| = \Omega(n)$.

Lemma (completeness)

For some daisy \mathcal{D}_j , under the correct kernel assignment, $|\mathcal{Q}_j| \geq 2\tau_j$ with high probability. Thus, the good sets $\mathcal{G} = \mathcal{Q}_j \setminus \mathcal{B}$ satisfy $|\mathcal{G}| \geq \tau_i$.

Lemma

For any $x \in \{0,1\}^k$, G makes $O(n^{1-\frac{1}{2q^2}})$ queries to C(x) and satisfies $\mathbb{P}[G^{C(x)} = x] \ge 2/3$.

Theorem

Any RLDC C with message length k and blocklength n satisfies

$$n^{1-\frac{1}{2q^2}} = \Omega(k).$$

Lemma

For any $x \in \{0,1\}^k$, G makes $O(n^{1-\frac{1}{2q^2}})$ queries to C(x) and satisfies $\mathbb{P}[G^{C(x)} = x] \ge 2/3$.

Theorem

Any RLDC ${\mathcal C}$ with message length k and blocklength n satisfies

$$n = \Omega\left(k^{1 + \frac{1}{2q^2 - 1}}\right) = k^{1 + \Omega\left(\frac{1}{q^2}\right)}.$$

Theorem [BGH+04]

There exist RLDCs with message length k and blocklength n satisfying

$$n=k^{1+O\left(\frac{1}{\sqrt{q}}\right)}.$$

Open problem

What is the largest $\alpha \in [1/2, 2]$ such that there exist RLDCs with

$$n = k^{1 + \Omega\left(\frac{1}{q^{\alpha}}\right)}?$$

References

Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.

Robust PCPs of proximity, shorter PCPs and applications to coding. In *Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004*, pages 1–10, 2004.

P. Erdös and R. Rado.
Intersection theorems for systems of sets.

Journal of the London Mathematical Society, s1-35(1):85–90, 1960.

Journal of the London Mathematical Society, \$1-35(1).65-90, 1900.

A lower bound for relaxed locally decodable codes. *CoRR*, abs/1904.08112, 2019.

Tom Gur and Oded Lachish.