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Definition

A sunflower is a collection S of q-sets such that
S ∩ S ′ = ∩T∈ST = K for any distinct S ,S ′ ∈ S. The set K is
called the kernel, and each P = S \ K is a petal.
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Sunflower lemma [ER60]

If |S| ≥ q!(s − 1)q = Θ(sq)q, then S contains a sunflower of size s.

Sunflower conjecture [ER60]

For some c : N→ N, if |S| ≥ c(s)q, then S contains a sunflower of
size s.

Theorem [ALWZ19]

If |S| = Ω(s log q)q, then S contains a sunflower of size s.
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If |S| ≥ q!(s − 1)q = Θ(sq)q, then S contains a sunflower of size s.

Sunflower conjecture [ER60]
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If |S| = Ω(s log q)q, then S contains a sunflower of size s.
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Definition

A t-daisy with kernel K is a collection D of q-sets such that each
i /∈ K is contained in at most t members of D.
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Error-correcting codes

Definition

An error-correcting code is an injective function C : Γk → Σn where
the preimage (message) is recoverable after significant corruption
of the image (codeword).

If a message is recoverable from at most ∆n corrupted
coordinates, ∆ is the (relative) distance of the code. k is its
message length and n is its blocklength.
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Error-correcting codes

Definition

A binary error-correcting code is an injective function
C : {0, 1}k → {0, 1}n where the preimage (message) is recoverable
after significant corruption of the image (codeword).

If a message is recoverable from at most ∆n corrupted
coordinates, ∆ is the (relative) distance of the code. k is its
message length and n is its blocklength.
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Error-correcting codes

Codes with large distance are resilient to corruption; codes with
large rate k/n have little redundancy. Goal: find codes with high
rate and distance.
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Error-correcting codes

Codes with large distance are resilient to corruption; codes with
large rate k/n have little redundancy. Goal: find codes with high
rate and distance.

Singleton bound

For any code C : Γk → Σn,

|Γ|k/n ≤ |Σ|1−∆+1/n.
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Error-correcting codes

Codes with large distance are resilient to corruption; codes with
large rate k/n have little redundancy. Goal: find codes with high
rate and distance.

Singleton bound

For any binary code C,

k/n + ∆ ≤ 1− 1/n < 1.
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Locally decodable codes

Definition

C is a locally decodable code (LDC) if one need only look at a
small number of coordinates of w ≈ C(x) to decode xi .
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Locally decodable codes

Definition

There exists a (randomised) algorithm D with decoding radius δ
such that, if w is δ-close to C(x), then, ∀i ,

P[Dw (i) = xi ] ≥ 2/3

and D makes q = o(n) queries to w .
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Relaxed locally decodable codes

Definition

C is a relaxed locally decodable code (RLDC) if C is (almost)
locally decodable but D can sometimes fail and return ⊥.
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Relaxed locally decodable codes

Definition

There exists a (randomised) algorithm D with decoding radius δ
such that

• if w = C(x), then

P[Dw (i) = xi ] ≥ 2/3;

• if w is δ-close to C(x), then

P[Dw (i) ∈ {xi ,⊥}] ≥ 2/3;

and D makes q = O(1) queries to w .
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Theorem [GL19]

Any one-sided RLDC C with message length k and blocklength n
satisfies

n = k1+Ω( 1
2q ).

Theorem

Any two-sided RLDC C with message length k and blocklength n
satisfies

n = k
1+Ω

(
1
q2

)
.
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One-sided RLDCs

Definition

There exists a (randomised) algorithm D with decoding radius δ
such that

• if w = C(x), then

P[Dw (i) = xi ] = 1;

• if w is δ-close to C(x), then

P[Dw (i) = xi ] ≥ 2/3;

and D makes q = o(n) queries to w .
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Overview

1 Local decoder D ′ as decision trees and predicates

2 Preprocessing: from D ′, obtain D after
• Randomness reduction
• Independence from decision trees
• Soundness amplification
• Combinatorialisation

3 From D, obtain global decoder G – using daisies!

4 G decodes k bits of a valid codeword with high probability
and o(n) queries: information theoretically, n = ω(k).
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Local decoders and decision trees

w = (1, 0, 0, . . .)

1

2

4 3

3

2 5

0

0 1

1

0 1

50 / 78



Objects
Our work

References

Results
Techniques
Open problem

Local decoders and decision trees

w = (1, 0, 0, . . .)

1

2

4 3

3

2 5

0

0 1

1

0 1

51 / 78



Objects
Our work

References

Results
Techniques
Open problem

Local decoders and decision trees

w = (1, 0, 0, . . .)

1

2

4 3

3

2 5

0

0 1

1

0 1

52 / 78



Objects
Our work

References

Results
Techniques
Open problem

Local decoders and decision trees

w = (1, 0, 0, . . .)

1

2

4 3

3

2 5

0

0 1

1

0 1

53 / 78



Objects
Our work

References

Results
Techniques
Open problem

Local decoders and decision trees

Input w and tree T determine set S = {1, 2, 3}.

Dw (i) = fi ,T (1, 0, 0)
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Local decoders and decision trees

D(i) = (µi , {fi ,T : T ∈ Ti})

Distribution µi over decision trees Ti capture randomness of D.
Predicates fi ,T : {0, 1}q → {0, 1,⊥} determine its output.
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Preprocessing

Lemma (randomness reduction)

∃ relaxed decoder D with query complexity O(q′) and randomness
complexity log(n) + O(1).

Decoder D ′:

• message length k;

• blocklength n;

• randomness complexity r ;

• decoding radius δ;

• query complexity q′;

• soundness ε′.
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Preprocessing

Lemma (independence from decision trees)

∃ local decoder D with soundness O(ε′) whose predicates only
depends on sets.

Decoder D ′:

• message length k;

• blocklength n;

• randomness complexity r ;

• decoding radius δ;

• query complexity q′;

• soundness ε′.

57 / 78



Objects
Our work

References

Results
Techniques
Open problem

Preprocessing

Lemma (soundness amplification)

For any ε > 0, ∃ relaxed decoder D with query complexity
O(q′ · log(ε′/ε)) and soundness ε.

Decoder D ′:

• message length k;

• blocklength n;

• randomness complexity r ;

• decoding radius δ;

• query complexity q′;

• soundness ε′.
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Preprocessing

Lemma (combinatorialisation)

∃ combinatorial relaxed decoder D with soundness O(ε′).

Decoder D ′:

• message length k;

• blocklength n;

• randomness complexity r ;

• decoding radius δ;

• query complexity q′;

• soundness ε′.
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Preprocessing

Corollary

There exists a combinatorial relaxed decoder D with:

• message length k ;

• blocklength n;

• randomness complexity log(n) + ρ;

• decoding radius δ;

• query complexity q = O(q′);

• soundness ε = O
(
min{q−1, 2−ρ}

)
.
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Daisy partition lemma

Let µ be a distribution over 2[n] whose support is S ⊆
([n]
q

)
, with

|S| = αn.
Define m = max{1, j − 1}. Then S can be partitioned into

{Dj : j ∈ [q]},

where Dj is a αnm/q-daisy with petals of size j .
The kernel of Dj satisfies |Kj | ≤ qn1−j/q.
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Global decoder G : construction

Binomial sampling with p = n
− 1

2q2
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Global decoder G : construction

D1, assignment 1
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Global decoder G : construction

D1, assignment 6
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Global decoder G : construction

D1, assignment 2|K1|
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Global decoder G : construction

D2, assignment 1
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Global decoder G : construction

D2, assignment ≤ 2|K2|: output •

71 / 78



Objects
Our work

References

Results
Techniques
Open problem

Global decoder G : construction

D3, assignment ≤ 2|K3|
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Global decoder G : analysis

Volume lemma, upper bound

For every daisy and kernel assignment κ, the bad q-sets B (that
decode to the wrong value) cover a small fraction of the codeword.
Thus, |B| = O(n).

Lemma (soundness)

For every daisy Dj and kernel assignment κ, the collection of bad
queried q-sets satisfies |B ∩ Qj | < τj with high probability.
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Global decoder G : analysis

Volume lemma, lower bound

Under the correct kernel assignment, for some daisy Dj , the
queried q-sets Qj cover a large fraction of the codeword. Thus,
|Qj | = Ω(n).

Lemma (completeness)

For some daisy Dj , under the correct kernel assignment, |Qj | ≥ 2τj
with high probability. Thus, the good sets G = Qj \ B satisfy
|G| ≥ τj .
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Global decoder G : analysis

Lemma

For any x ∈ {0, 1}k , G makes O(n
1− 1

2q2 ) queries to C (x) and
satisfies P[GC(x) = x ] ≥ 2/3.

Theorem

Any RLDC C with message length k and blocklength n satisfies

n
1− 1

2q2 = Ω(k).

75 / 78



Objects
Our work

References

Results
Techniques
Open problem

Global decoder G : analysis

Lemma

For any x ∈ {0, 1}k , G makes O(n
1− 1

2q2 ) queries to C (x) and
satisfies P[GC(x) = x ] ≥ 2/3.

Theorem

Any RLDC C with message length k and blocklength n satisfies

n = Ω

(
k

1+ 1
2q2−1

)
= k

1+Ω
(

1
q2

)
.
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Theorem [BGH+04]

There exist RLDCs with message length k and blocklength n
satisfying

n = k
1+O

(
1√
q

)
.

Open problem

What is the largest α ∈ [1/2, 2] such that there exist RLDCs with

n = k
1+Ω

(
1
qα

)
?
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